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Entangling Rate in Closed System

Alice Bob

systems A ← HAB → B
ancillas a b

initial state
ρ(0) = |Ψ〉 〈Ψ|aABb

Time evolution in Schrödinger picture

dρ(t)
dt

= −i[H, ρ(t)] = −i[1la ⊗ HAB ⊗ 1lb, ρ(t)]

has an explicit solution
ρ(t) = U∗(t) |Ψ〉 〈Ψ|U(t),

where
U(t) = eitH = Ia ⊗ eitHAB ⊗ Ib

is a unitary evolution. The state ρ(t) is always pure.



To measure the entanglement between Alice and Bob, we calculate the entanglement
entropy

E(ρ(t)) := S(ρaA(t)) = −Tr ρaA(t) ln ρaA(t),

here ρaA(t) = TrBb ρaABb(t) = TrBb U∗(t) |Ψ〉 〈Ψ|U(t).

Remark
Small Total Entangling (Bennet et al) The total change of the entanglement E(ρ(t)) is
at most 2 ln d , where d = min{|A|, |B|}.

The entangling rate is defined by

Γ(Ψ,H) =
dE(ρ(t))

dt

∣∣∣∣
t=0
.

It can be expressed as

Γ(Ψ,H) = −i Tr
(

HAB [ρaAB , ln(ρaA)⊗ IB ]
)
.
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Conjectured by Bravyi ’07:

Theorem
Small Incremental Entangling
There is a universal constant c such that for all dimensions of ancillas a, b and for all
states |Ψ〉, the following holds

Γ(Ψ,H) ≤ c‖H‖ ln d ,

where d = min{|A|, |B|}.

History of results:

2003 Bennett et al.: Γ(Ψ,H) ≤ c‖H‖d4

2007 Bravyi: Γ(Ψ,H) ≤ 2‖H‖d2

2007 Bravyi, no ancillas: Γ(Ψ,H) ≤ c(d)‖H‖ log d , with c(d)→ 1 with large d

2013 Lieb, Vershynina: Γ(Ψ,H) ≤ (4/ ln 2)‖H‖d
2013 Van Acoleyen, Mariën, Verstraete: Γ(Ψ,H) ≤ 18‖H‖ log d

2013 Audenaert: Γ(Ψ,H) ≤ 8‖H‖ log d
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Mixing Rate Problem

H is a Hilbert space of dimension d . Let E2 = {(p, ρ1), ((1− p), ρ2)} be a probabilistic
ensemble on H with expected density operator

ρ = pρ1 + (1− p)ρ2.

For any Hamiltonian H the time-dependent state is

ρ(t) = pρ1 + (1− p)e−itHρ2eitH .

The von Neumann entropy of this state is

S(ρ(t)) = −Tr ρ(t) ln ρ(t).

Remark
Small Total Mixing For any ensemble E2 = {(p, ρ1), ((1− p), ρ2)}, the entropy of a
state ρ(t) at any time t satisfies

S(E2) ≤ S(ρ(t)) ≤ S(E2) + S(p),

where S(E2) = pS(ρ1) + (1− p)S(ρ2) is the average entropy
and S(p) = −p ln p − (1− p) ln(1− p) is a binary entropy.
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A mixing rate is defined as

Λ(E2,H) =
dS(ρ(t))

dt

∣∣∣∣
t=0
.

Conjectured by Bravyj ’07:

Theorem

Small Incremental Mixing.
(Van Acoleyen et. al. ’13) For any ensemble E2 = {(p, ρ1), (1− p, ρ2)}, the maximum
mixing rate is bounded above by a binary Shannon entropy.

Λ(E2) : = c max{|Λ(E2,H)| : −I ≤ H ≤ I}
≤ c S(p) = c{−p ln p − (1− p) ln(1− p)}.

A stronger bound for 1/100 < p < 99/100.

Theorem

(E. H. Lieb, A. V.’ 13) For any ensemble E2 = {(p, ρ1), (1− p, ρ2)}, the maximum
mixing rate is bounded above

Λ(E2) ≤ 4
√

p(1− p).

A Mixing Rate problem can be generalized for an ensemble consisting of any number
of states.
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SIM implies SIE

The entangling rate is

Γ(Ψ,H) = −iTr
(

HAB [ρaAB , ln(ρaA ⊗
IB
|B|

)]
)

and the mixing rate is
Λ(E2,H) = −iTr(H [pρ1, ln ρ]).

Lemma
(Braviy ’07) For any mixed state ρAB there exists a mixed state µAB such that

ρA ⊗
IB
|B|

= |B|−2ρAB + (1− |B|−2)µAB .

Define the ensemble E2 = {(|B|−2, ρAB), (1− |B|−2, µAB)}. Then the average density
state is τAB = ρA ⊗

IB
|B| . Assuming SIM, we get

Λ(E2,H) ≤ cS(|B|−2) ≤ 4c|B|−2 ln |B|,

here we used −x ln x − (1− x) ln(1− x) ≤ 2x | ln x |. Therefore Γ(Ψ,H) ≤ 4c ln |B|.
So SIM with const c implies SIE with const 4c.
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Entanglement rates in open systems
Alice Bob

systems A ← LAB → B
ancillas a b

initial state
ρ(0) = |Ψ〉 〈Ψ|aABb

Time evolution of a state ρ for open system is the solution to

dρ(t)
dt

= LAB(ρ(t))

with the generator given by Hamiltonian and a term of Lindblad type

LAB(ρ) = −i[HAB , ρ] +
∑

a
LAB(a)ρL∗AB(a)−

1
2

(
L∗AB(a)LAB(A)ρ+ ρL∗AB(a)LAB(a)

)
.

The entanglement measure E(·) should satisfy the following assumptions:
1 E vanishes on product states
2 E is invariant under local unitary operations
3 E can not increase under LOCC operations

If E(ρ(t)) is differentiable, the entangling rate is

Γ(Ψ,L) =
d E(ρ(t))

dt

∣∣∣∣
t=0
.

For entanglement measure E the entangling rate for time ∆t > 0 is

Γ(Ψ,L,∆t) =
E(ρ(∆t))− E(ρ(0))

∆t
.



Entanglement rates in open systems
Alice Bob

systems A ← LAB → B
ancillas a b

initial state
ρ(0) = |Ψ〉 〈Ψ|aABb

Time evolution of a state ρ for open system is the solution to

dρ(t)
dt

= LAB(ρ(t))

with the generator given by Hamiltonian and a term of Lindblad type

LAB(ρ) = −i[HAB , ρ] +
∑

a
LAB(a)ρL∗AB(a)−

1
2

(
L∗AB(a)LAB(A)ρ+ ρL∗AB(a)LAB(a)

)
.

The entanglement measure E(·) should satisfy the following assumptions:
1 E vanishes on product states
2 E is invariant under local unitary operations
3 E can not increase under LOCC operations

If E(ρ(t)) is differentiable, the entangling rate is

Γ(Ψ,L) =
d E(ρ(t))

dt

∣∣∣∣
t=0
.

For entanglement measure E the entangling rate for time ∆t > 0 is

Γ(Ψ,L,∆t) =
E(ρ(∆t))− E(ρ(0))

∆t
.



Entanglement rates in open systems
Alice Bob

systems A ← LAB → B
ancillas a b

initial state
ρ(0) = |Ψ〉 〈Ψ|aABb

Time evolution of a state ρ for open system is the solution to

dρ(t)
dt

= LAB(ρ(t))

with the generator given by Hamiltonian and a term of Lindblad type

LAB(ρ) = −i[HAB , ρ] +
∑

a
LAB(a)ρL∗AB(a)−

1
2

(
L∗AB(a)LAB(A)ρ+ ρL∗AB(a)LAB(a)

)
.

The entanglement measure E(·) should satisfy the following assumptions:
1 E vanishes on product states
2 E is invariant under local unitary operations
3 E can not increase under LOCC operations

If E(ρ(t)) is differentiable, the entangling rate is

Γ(Ψ,L) =
d E(ρ(t))

dt

∣∣∣∣
t=0
.

For entanglement measure E the entangling rate for time ∆t > 0 is

Γ(Ψ,L,∆t) =
E(ρ(∆t))− E(ρ(0))

∆t
.



Relative entropy of entanglement in ancilla-free system

Suppose that dB ≤ dA and da = db = 1.
A relative entropy of entanglement of a state ρAB(t) is given by

D(ρ(t)) := min
σsep

D(ρ(t)||σ) = min
σsep

Tr
(
ρ(t) ln ρ(t)− ρ(t) logσ

)
,

where σAB =
∑

j αjσA(j)⊗ σB(j) with
∑

j αj = 1. For pure states the relative entropy
of entanglement is an entropy of entanglement.

Theorem
(V. ’15) For any ε > 0 there exists δ > 0 such that for any ∆t < δ the entangling rate for
the relative entropy of entanglement has the following upper bound

ΓR(Ψ,L,∆t) ≤ 4
(
‖H‖+ 86

∑
α

‖Lα‖2
)

log d + ε,

where d = min(dA, dB).
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Beginning of the Proof
For state |Ψ〉AB with Schmidt decomposition

|Ψ〉 =
d∑

n=1

√
pn |φn〉A |ψn〉B .

the relative entropy of entanglement is achieved by a state

σ0 =
d∑

n=1

pn |φn〉 〈φn| ⊗ |ψn〉 〈ψn| .

Proposition

(V. ’15) For states ρAB = |Ψ〉 〈Ψ|AB and σ0 defined above, there exists a mixed state
µAB such that

σ0 =
1
d
ρAB + (1−

1
d

)µAB .

At time t = 0: D(ρ) = D(ρ||σ0) = E(Ψ) with σ0 discussed before.

For any time t : D(ρ(t)) ≤ D(ρ(t)||σ0).

Therefore for any ε > 0 there exists δ > 0 such that for any ∆t < δ

ΓR(Ψ,L,∆t) ≤
d
dt

D(ρ(t)||σ0)

∣∣∣∣
t=0

+ ε.



Beginning of the Proof
For state |Ψ〉AB with Schmidt decomposition

|Ψ〉 =
d∑

n=1

√
pn |φn〉A |ψn〉B .

the relative entropy of entanglement is achieved by a state

σ0 =
d∑

n=1

pn |φn〉 〈φn| ⊗ |ψn〉 〈ψn| .

Proposition

(V. ’15) For states ρAB = |Ψ〉 〈Ψ|AB and σ0 defined above, there exists a mixed state
µAB such that

σ0 =
1
d
ρAB + (1−

1
d

)µAB .

At time t = 0: D(ρ) = D(ρ||σ0) = E(Ψ) with σ0 discussed before.

For any time t : D(ρ(t)) ≤ D(ρ(t)||σ0).

Therefore for any ε > 0 there exists δ > 0 such that for any ∆t < δ

ΓR(Ψ,L,∆t) ≤
d
dt

D(ρ(t)||σ0)

∣∣∣∣
t=0

+ ε.



The derivative of relative entropy is calculated as follows, for p = 1/d ,

d
dt

D(ρ(t)||σ0)

∣∣∣∣
t=0

= Tr(ρ̇(0) log ρ− ρ̇(0) logσ0)

=
1
p

iTr
(

H[pρ, log(pρ+ (1− p)µ)]
)

−
1

2p

∑
α

Tr
(

L∗α[Lα(pρ), log(pρ+ (1− p)µ]
)

+
1

2p

∑
α

Tr
(

Lα[(pρ)L∗α, log(pρ+ (1− p)µ)]
)
−
∑
α

Tr(L∗α[Lαρ, log ρ]).

Each term can be made of the form

|Tr(L̃∗[L̃ X , log Y ])|,

where ‖L̃‖ = 1, 0 ≤ X ≤ Y ≤ I and TrY = 1, TrX = p.

Lemma

(V. ’15) For 0 ≤ X ≤ Y ≤ I, TrY = 1, TrX = p and ‖L̃‖ = 1,

|Tr(L̃∗[L̃ X , log Y ])| ≤ 172 p log(1/p).

�



Quantum Mutual Information - ancilla-assisted case

The quantum mutual information of a state ρaABb in a bipartite cut Alice−Bob is:

I(aA; Bb)ρ = S(ρaA) + S(ρBb)− S(ρaABb) = D(ρaABb||ρaA ⊗ ρBb).

Theorem
(V. ’15) For a system starting in pure state ρaABb = |Ψ〉 〈Ψ|aABb and evolving with
generator L the following holds

d
dt

I(aA; Bb)ρ(t)

∣∣∣∣
t=0
≤ 4
(

2‖H‖+ 129
∑
α

‖Lα‖2
)

(log dA + log dB).



Open Questions

Question
Small incremental entangling in open system (V. ’15).
Denote d = min{dA, dB}. For which entanglement measures there exists a constant c
and a non-negative and non-decreasing function f (·) such that for any ε > 0 there
exists δ > 0 such that for any ∆t < δ the entangling rate is bounded above by

Γ(Ψ,L,∆t) ≤ c‖L‖f (d) + ε,

where c is independent of the dimensions of systems A and B, ancillas a, b, the
generator L and the initial state |Ψ〉aABb .

Small Incremental Entangling Problem for
Renyi entropies
Entanglement of Formation
Negativity
...

Stability of Area Law for open systems

SIE for multipartite systems
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