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Time evolution of a close system

Quantum system = Hilbert space H = CN ;

We write B(H) the Banach space of bounded linear maps on H;
The Hamiltonian of the system is given by a selfadjoint operator H ∈ B(H).

Schrödinger Equation:

The time evolution is given by the equation:

dUt = −itH Utdt

U0 = IH

The solution (Ut)t∈R is a one-parameter group of unitary operators on H:
Ut is a unitary operator on H for all t ∈ R;
Ut+s = UtUs for all s, t ∈ R, and U0 = IH;

t 7→ Ut is strongly continuous.

Main problem:

How to model an open system?
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Markovian description in continuous time

Let (Xt)t≥0 be a stochastic process on some probability space (Ω,F , (Ft)t≥0,P) with value
in Rd ;
We can try to obtain a unitary solution to the following stochastic equation:

1-dimensional process: dUt = − (iH + A)Utdt + BUtdXt , U0 = IH,

d-dimensional process: dUt = − (iH + A)Utdt +
d∑

k=1

BkUtdX k
t ,

where A,B ∈ B(H).
A,B,Bk ∈ B(H), have to be chosen with the process (Xt) so that there exists a unique
unitary solution.
Main point of the talk: (Xt) has to be a Brownian process or a Poisson process. Then we
also know the form of A and B.

Why it is a good method:
It is a simple way to model an open system for which we do not need a new theory;
It allows us to use the different tools from stochastic calculus.

Why it is not enough:
We only get quantum open dynamics with a classical environment!
We do not get an explicit construction of the environment.

Goal

Integrate this framework into a quantum framework. The main tool is the Quantum Stochastic
Calculus developed by Hudson and Parthasarathy in the 80s.
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Two examples: Brownian and Poisson processes

The case of a d-dimensional Brownian process (B1
t , ...,Bd

t ):

A =
1
2

d∑
k=1

L2
k , Lk ∈ B(H), Lk = L∗k

Bk = Lk

The following equation admits a unique unitary solution:

dUt = −

iH +
1
2

d∑
k=1

L2
k

Utdt +
d∑

k=1

LkUtdBk
t .

The case of a d-dimensional Poisson process of intensity (N1
t , ...,Nd

t ), each coordinate of
intensity ρk :

A =
1
2

d∑
k=1

ρ2
k(2IH − Sk − S∗k ), Sk ∈ B(H), SkS∗k = IH

Bk = ρk(Sk − IH)

The following equation admits a unique unitary solution:

dUt = −

iH +
1
2

d∑
k=1

ρ2
k(2IH − Sk − S∗k )

Utdt +
d∑

k=1

ρk(Sk − IH)UtdNt .

Workshop MCQM 2016 4 / 13



Two examples: Brownian and Poisson processes

The case of a d-dimensional Brownian process (B1
t , ...,Bd

t ):

A =
1
2

d∑
k=1

L2
k , Lk ∈ B(H), Lk = L∗k

Bk = Lk

The following equation admits a unique unitary solution:

dUt = −

iH +
1
2

d∑
k=1

L2
k

Utdt +
d∑

k=1

LkUtdBk
t .

The case of a d-dimensional Poisson process of intensity (N1
t , ...,Nd

t ), each coordinate of
intensity ρk :

A =
1
2

d∑
k=1

ρ2
k(2IH − Sk − S∗k ), Sk ∈ B(H), SkS∗k = IH

Bk = ρk(Sk − IH)

The following equation admits a unique unitary solution:

dUt = −

iH +
1
2

d∑
k=1

ρ2
k(2IH − Sk − S∗k )

Utdt +
d∑

k=1

ρk(Sk − IH)UtdNt .

Workshop MCQM 2016 4 / 13



Random variable and their multiplication operators

Question: how can we integrate the classical setting inside the quantum one?
Let X be a random variable on some probability space (Ω,F ,P), where P is the law of X ;

Remark that we can recover all the information we want about X with the functionals:

f 7→ E[f (X )], f ∈ L∞(Ω,F ,P)

(moments, characteristic functions, etc...)

These functionals can be written on the Hilbert space level: take K = L2(P) with scalar
product

〈f , g〉 =

∫
Ω
f g dP

Then we have
E[f (X )] = 〈1,Mf 1〉,

where 1 is the constant function equal to 1 and Mf is the operator of multiplication by f :

Mf g = fg , f ∈ L∞(P), g ∈ L2(P).

Conclusion: We can replace the process Xt by its multiplication operator
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The multiplication operator by the Brownian motion

With the previous identification, it is possible to "identify" the Brownian motion with its
multiplication operator:

MBk
t
f = Bk

t f , f ∈ L2(Ω,F ,P).

Then we can formally write the stochastic Schrödinger Equation with a Brownian noise as:

dUt = −(iH +
1
2

d∑
i=1

L2
k)Utdt +

d∑
i=1

LkUt MdBk
t
, U0 = IH

It is no longer a stochastic differential equation. It is now an equation on the operator
level, where there is nothing random! Ut is now a unitary operator on H⊗ L2(Ω,Ft ,P).

The quantum stochastic calculus developed by Hudson and Parthasarathy allows to give a
meaning to this equation.
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The Probabilist Fock space

Definition

The d-multiple probabilist Fock space is define as:

Φ(Cd ) = FB(L2(R+,Cd )) =
⊕
n≥0

L2(R+,Cd )∨n≈ L2(Ω,F , (Ft)t≥0,P)

On this space, we consider the usual creation, annihilation and number operators:

a0
k(t) = a∗(1[0,t]|ek〉), ak

0(t) = a(1[0,t]〈ek |), ak
l (t) = a◦(1[0,t]|el 〉〈ek |),

where (ek) is an orthonormal basis of Cd .
The Hudson-Parthasarathy quantum stochastic calculus allows to integrate with respect to
the quantum noises:

da0
k(t) = a∗(1[t,t+dt]|ek〉), dak

0(t) = a(1[t,t+dt]〈ek |), dak
l (t) = a◦(1[t,t+dt]|el 〉〈ek |).

MBk
t
and MNk

t
are given explicitly in terms of the quantum noises as:

MBt = a0
k(t) + ak

0(t),

MNt = a0
k(t) + ak

0(t) + ak
k (t) (here the intensity is assumed to be 1).

Consequently MdBk
t
reads:

MdBk
t

= da0
k(t) + dak

0(t).
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The Hudson-Parthasarathy Equation in the general situation

Main idea: The quantum noises behave nicely, in a way which is closed to classical noises. The
quantum stochastic calculus is built with respect to those noises in a natural way.

Theorem (Hudson-Parthasarathy, 1984)

Write Λ = {1, ..., d}. Let H, Lk , Sk
l ∈ B(H) be such that H = H∗ and S = (Sk

l )k,l∈Λ is a unitary
operator on H⊗ Cd . Then the unitary Hudson-Parthasarathy Equation:

U0 = I , dUt =−

iH +
1
2

∑
k∈Λ

L∗kLk

Utdt +
∑
k∈Λ

LkUtda0
k(t)

+
∑
k∈Λ

−∑
l∈Λ

L∗l S
k
l

Utdak
0(t) +

∑
k,l∈Λ

(
Sk

l − δk,l IH
)
Utdak

l (t)

has a unique unitary solution on H⊗ Φ(Cd ).

We need a way to characterize when the noise in the previous equation is in fact a classical
noise.
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The Noise Algebra

Definition

For all t > 0, the Noise Algebra At(U) is defined as the smallest von Neumann algebra on
Φ(Cd ) such that

Us ∈ B(H)⊗At(U) ∀0 ≤ s ≤ t

It is a well-known result on von Neumann algebra that a commutative von Neumann
algebra is always isomorphic to a commutative algebra L∞(Ω,F ,P) for some probability
space (Ω,F ,P);

In this case, At(U) commutative for all t > 0 means that there exist a probability space
(Ω,F , (Ft)t≥0,P) with a filtration (Ft)t≥0 on it such that:

At(U) ≈ L∞(Ω,Ft ,P)

The problem is thus:

1) to associated the probability space with a stochastic process (Xt)t≥0 on it (adapted to the
filtration);

1) to identify this process;

2) to make the link with the Hudson-Parthasarathy Equation.
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The case of a commutative environment

Theorem

Suppose that At(U·) is commutative. Then Cd = KW ⊕KP and Λ can be split into two subsets
ΛW and ΛP such that the HP Equation takes the form:

dUt = −iHUtdt + dUW
t + dUP

t ,

where UW
· and UP

· are respectively the solutions of the HP Equations:

dUW
t =

∑
k∈ΛW

(
−
1
2
L2
kU

W
t dt + LkUW

t dBk
t

)
, on H⊗ Φ(KW)

dUP
t =

∑
k∈ΛP

(
−
1
2
ρ2
k
(
2IH − Sk − S∗k

)
UP

t dt + ρk (Sk − IH)UP
t dN

k
t

)
, on H⊗ Φ(KP)

where the Lk and the Sk are respectively selfadjoint and unitary operators on H, the ρk are
positive real numbers and

1 (Bt)t≥0 = (B1
t , · · · ,Bm

t ) is a real m-dimensional Brownian motion,

2 (Nt)t≥0 = (N1
t , ...,Nd

t ) is a d −m-dimensional Poisson process, each coordinate Nk
t being of

intensity ρk .
3 (Bt)t≥0 and (Nt)t≥0 are two independent processes.
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Some notions about the structure of the Fock space

In the HP-Equation:

dUt =−

iH +
1
2

∑
k∈Λ

L∗kLk

Utdt +
∑
k∈Λ

LkUtda0
k(t)

+
∑
k∈Λ

−∑
l∈Λ

L∗l S
k
l

Utdak
0(t) +

∑
k,l∈Λ

(
Sk

l − δk,l IH
)
Utdak

l (t)

a special role is played by the unitary operator on H⊗ Cd ≈ H⊕d :

S = (Sk
l )k,l∈Λ.

If Cd = K1 ⊕K2, then the probabilist Fock space can be factorized as:

Φ(Cd ) = Φ(K1)⊗ Φ(K2)

If H⊗K1 is stable by S, then the HP Equation takes the form:

dUt = −iHUtdt + dU1
t + dU2

t

where U1 and U2 are solutions of HP Equations on Φ(K1) and Φ(K2) respectively.
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Decomposition between a classical and a quantum part

Definition

Let K1 be a subspace of Cd and write K2 = K⊥1 . We say that Φ(K1) is a Commutative
Subsystem of the Environment if K1 6= {0} and:

both H⊗K1 and H⊗K2 are stable by S. Consequently

dUt = −iHUtdt + dU1
t + dU2

t .

At(U1) is commutative.

Theorem (Decomposition Theorem)

There exists a decomposition Cd = Kc ⊕Kq , with Kc and Kq stable by S so that:

dUt = −iHUtdt + dUc
t + dUq

t

Furthermore Uq
· does not have any Commutative Subsystem and, either Kc = {0}, or:

Φ(Kc) is a Commutative Subsystem of the Environment.

If K is a subspace of Cd and Φ(K) is a Commutative Subsystem of the Environment then K
is a subspace of Kc .
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Decomposition between a classical and a quantum part

Definition

Let K1 be a subspace of Cd and write K2 = K⊥1 . We say that Φ(K1) is a Commutative
Subsystem of the Environment if K1 6= {0} and:

both H⊗K1 and H⊗K2 are stable by S. Consequently

dUt = −iHUtdt + dU1
t + dU2

t .

At(U1) is commutative.

Theorem (Decomposition Theorem)

There exists a decomposition Cd = Kc ⊕Kq , with Kc and Kq stable by S so that:

dUt = −iHUtdt + dUc
t + dUq

t

Furthermore Uq
· does not have any Commutative Subsystem and, either Kc = {0}, or:

Φ(Kc) is a Commutative Subsystem of the Environment.

If K is a subspace of Cd and Φ(K) is a Commutative Subsystem of the Environment then K
is a subspace of Kc .
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Thank you for your attention
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