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Time evolution of a close system

@ Quantum system = Hilbert space H = CN.
o We write B(#) the Banach space of bounded linear maps on #;
@ The Hamiltonian of the system is given by a selfadjoint operator H € B(#H).
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Time evolution of a close system

@ Quantum system = Hilbert space H = CN.
o We write B(#) the Banach space of bounded linear maps on #;
@ The Hamiltonian of the system is given by a selfadjoint operator H € B(#H).

Schrédinger Equation:
The time evolution is given by the equation:

dUt = 7ItH Utdt
Uo = Iy

The solution (Ut)ter is a one-parameter group of unitary operators on #:
@ Ut is a unitary operator on H for all t € R;
@ Utys = Ui Us for all st € R, and Up = Iy;

o t > U is strongly continuous.
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Time evolution of a close system

@ Quantum system = Hilbert space H = CN.
o We write B(#) the Banach space of bounded linear maps on #;
@ The Hamiltonian of the system is given by a selfadjoint operator H € B(#H).

Schrédinger Equation:
The time evolution is given by the equation:
dUt = 7ItH Utdt
Uo = Iy
The solution (Ut)ter is a one-parameter group of unitary operators on #:
@ Ut is a unitary operator on H for all t € R;
@ Utys = Ui Us for all st € R, and Up = Iy;

o t > U is strongly continuous.

Main problem:

How to model an open system?
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Markovian description in continuous time

@ Let (X:)¢>0 be a stochastic process on some probability space (2, F, (Ft)¢>0,P) with value
in Rd;
@ We can try to obtain a unitary solution to the following stochastic equation:
1-dimensional process: dUs = — (iH + A) Uedt + BUrdXe, Up = Iy,
d
d-dimensional process:  dUs = — (iH + A) Urdt + > _ B, UrdX{,
k=1
where A, B € B(H).
o A, B, By € B(H), have to be chosen with the process (X:) so that there exists a unique
unitary solution.
@ Main point of the talk: (X:) has to be a Brownian process or a Poisson process. Then we
also know the form of A and B.
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Markovian description in continuous time

@ Let (X:)¢>0 be a stochastic process on some probability space (2, F, (Ft)¢>0,P) with value
in Rd;
@ We can try to obtain a unitary solution to the following stochastic equation:
1-dimensional process: dUs = — (iH + A) Uedt + BUrdXe, Up = Iy,
d
d-dimensional process:  dUs = — (iH + A) Urdt + > _ B, UrdX{,
k=1
where A, B € B(H).
o A, B, By € B(H), have to be chosen with the process (X:) so that there exists a unique
unitary solution.
@ Main point of the talk: (X:) has to be a Brownian process or a Poisson process. Then we
also know the form of A and B.
Why it is a good method:
@ It is a simple way to model an open system for which we do not need a new theory;
o It allows us to use the different tools from stochastic calculus.
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Markovian description in continuous time

@ Let (X:)¢>0 be a stochastic process on some probability space (2, F, (Ft)¢>0,P) with value
in Rd;
@ We can try to obtain a unitary solution to the following stochastic equation:
1-dimensional process: dUs = — (iH + A) Uedt + BUrdXe, Up = Iy,
d
d-dimensional process:  dUs = — (iH + A) Urdt + > _ B, UrdX{,
k=1
where A, B € B(H).
o A, B, By € B(H), have to be chosen with the process (X:) so that there exists a unique
unitary solution.
@ Main point of the talk: (X:) has to be a Brownian process or a Poisson process. Then we
also know the form of A and B.
Why it is a good method:
@ It is a simple way to model an open system for which we do not need a new theory;
o It allows us to use the different tools from stochastic calculus.
Why it is not enough:
o We only get quantum open dynamics with a classical environment!
@ We do not get an explicit construction of the environment.
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Markovian description in continuous time

@ Let (X:)¢>0 be a stochastic process on some probability space (2, F, (Ft)¢>0,P) with value
in Rd;
@ We can try to obtain a unitary solution to the following stochastic equation:
1-dimensional process: dUs = — (iH + A) Uedt + BUrdXe, Up = Iy,
d
d-dimensional process:  dU: = — (iH + A) Urdt + > B UrdX{,
k=1
where A, B € B(H).
o A, B, By € B(H), have to be chosen with the process (X:) so that there exists a unique
unitary solution.
@ Main point of the talk: (X:) has to be a Brownian process or a Poisson process. Then we
also know the form of A and B.
Why it is a good method:
@ It is a simple way to model an open system for which we do not need a new theory;
o It allows us to use the different tools from stochastic calculus.
Why it is not enough:
o We only get quantum open dynamics with a classical environment!
o We do not get an explicit construction of the environment.

Goal

Integrate this framework into a quantum framework. The main tool is the Quantum Stochastic
Calculus developed by Hudson and Parthasarathy in the 80s.
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Two examples: Brownian and Poisson processes

The case of a d-dimensional Brownian process (B}, ..., Btd):

d
1

A==3"12, L € B(H), Li=L;
221 k € B(H), Li=1Lg

Bk = Lg
The following equation admits a unique unitary solution:
1M d
dUe=— | iH+ 2 ; L2 | Updt + kzl L, UrdBE.
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Two examples: Brownian and Poisson processes

The case of a d-dimensional Brownian process (B}, ..., Bf):

d
1

A==3"12, L € B(H), Li=L;
221 k € B(H), Li=1Lg

By = Ly
The following equation admits a unique unitary solution:
1M d
dUe=— | iH+ 2 ; L2 | Updt + kzl L, UrdBE.

The case of a d-dimensional Poisson process of intensity (NI, ..., N¢), each coordinate of
intensity py:

d
1 * *
A= 5 Zpi(2’y_ — Sk — Sk)’ Sk S B('H), SkSk = I’H.
k=1
By = pk(Sk — hu)
The following equation admits a unique unitary solution:
1 d d
_ ; 2 *
dUs = — | iH + 5 ;pk(ZI'H — Sk —S5;) | Uedt + ;pk(sk — I3¢)UedNs.
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Random variable and their multiplication operators

Question: how can we integrate the classical setting inside the quantum one?
@ Let X be a random variable on some probability space (2, F,P), where P is the law of X;

@ Remark that we can recover all the information we want about X with the functionals:
f— E[f(X)], feL®Q,F,P)

(moments, characteristic functions, etc...)
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Random variable and their multiplication operators

Question: how can we integrate the classical setting inside the quantum one?
@ Let X be a random variable on some probability space (2, F,P), where P is the law of X;

@ Remark that we can recover all the information we want about X with the functionals:
f— E[f(X)], f e L>®(Q,F,P)

(moments, characteristic functions, etc...)

@ These functionals can be written on the Hilbert space level: take K = L?(P) with scalar
product

(f,8) =/Q?g dP

Then we have
E[f(X)] = (1, M¢1),

where 1 is the constant function equal to 1 and My is the operator of multiplication by f:

Mg = fg, f € L>®(P), g € L*(P).
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Random variable and their multiplication operators

Question: how can we integrate the classical setting inside the quantum one?
@ Let X be a random variable on some probability space (2, F,P), where P is the law of X;

@ Remark that we can recover all the information we want about X with the functionals:
f— E[f(X)], f e L>®(Q,F,P)

(moments, characteristic functions, etc...)

@ These functionals can be written on the Hilbert space level: take K = L?(P) with scalar
product

(f,8) =/Q?g dP

Then we have
E[f(X)] = (1, M¢1),

where 1 is the constant function equal to 1 and My is the operator of multiplication by f:
Mg = fg, f € L>®(P), g € L*(P).

o Conclusion: We can replace the process X; by its multiplication operator
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The multiplication operator by the Brownian motion

o With the previous identification, it is possible to "identify" the Brownian motion with its
multiplication operator:
Mgy f = BEF, f e L2(Q, F,P).
t

@ Then we can formally write the stochastic Schrédinger Equation with a Brownian noise as:

d d
. 1
U = —(iH + 5 3 L{)Uedt + 3 LUt Mype, Vo = Iy
i=1 i=1
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The multiplication operator by the Brownian motion

o With the previous identification, it is possible to "identify" the Brownian motion with its
multiplication operator:
Mgy f = BEF, f e L2(Q, F,P).
t

@ Then we can formally write the stochastic Schrédinger Equation with a Brownian noise as:

d d
. 1
U = —(iH + 5 3 L{)Uedt + 3 LUt Mype, Vo = Iy
i=1 i=1

@ It is no longer a stochastic differential equation. It is now an equation on the operator
level, where there is nothing random! U; is now a unitary operator on H ® L?(Q, F¢,P).

o The quantum stochastic calculus developed by Hudson and Parthasarathy allows to give a
meaning to this equation.
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The Probabilist Fock space
Definition
The d-multiple probabilist Fock space is define as:

o(C?) = Fe(L*(RT,C%)) = P L*(RT,C)V"
n>0

@ On this space, we consider the usual creation, annihilation and number operators:
* k k
ap(t) = a* (L glex))s  a(t) = a(lpg(exl)s  af(t) = a°(Lpo,eje) (e )

where (e) is an orthonormal basis of C9.
o The Hudson-Parthasarathy quantum stochastic calculus allows to integrate with respect to
the quantum noises:

daQ(t) = a* (Lt eraqlen)),  dag(t) = a(leerar(el),  daf(t) = a°(Nje ert]ie)) (e ))-
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The Probabilist Fock space

Definition
The d-multiple probabilist Fock space is define as:

o(C?) = Fe(L*(RT,C%)) = P L*(RT,C)V"
n>0

On this space, we consider the usual creation, annihilation and number operators:
* k k
ap(t) = a* (L glex))s  a(t) = a(lpg(exl)s  af(t) = a°(Lpo,eje) (e )

where (e) is an orthonormal basis of C9.
o The Hudson-Parthasarathy quantum stochastic calculus allows to integrate with respect to
the quantum noises:

daQ(t) = a* (Lt eraqlen)),  dag(t) = a(leerar(el),  daf(t) = a°(Nje ert]ie)) (e ))-

MB“ and MNI‘ are given explicitly in terms of the quantum noises as:
t t
0 k
Mg, = a;(t) + ag (1),
My, = a2(t) + af(t) + af(t) (here the intensity is assumed to be 1).
o Consequently MdB" reads:
¢ 0 k
MdB{‘ = day(t) + dag(t).
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The Hudson-Parthasarathy Equation in the general situation

Main idea: The quantum noises behave nicely, in a way which is closed to classical noises. The
quantum stochastic calculus is built with respect to those noises in a natural way.
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The Hudson-Parthasarathy Equation in the general situation

Main idea: The quantum noises behave nicely, in a way which is closed to classical noises. The
quantum stochastic calculus is built with respect to those noises in a natural way.

Theorem (Hudson-Parthasarathy, 1984)

Write N = {1,...,d}. Let H, Ly, SI" € B(H) be such that H= H* and S = (S/‘)kJE/\ is a unitary
operator on H @ C¥. Then the unitary Hudson-Parthasarathy Equation:

1
Up=1,  dUr=—iH+2> Lily | Uedt+ 3 LiUpdal(t)
ke ken
+ 3= S0 LSk | Uedab(r) + > (s,k - 5k,,/H) Urda®(t)
ken len k,leN

has a unique unitary solution on H ® d>((Cd).
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The Hudson-Parthasarathy Equation in the general situation

Main idea: The quantum noises behave nicely, in a way which is closed to classical noises. The
quantum stochastic calculus is built with respect to those noises in a natural way.

Theorem (Hudson-Parthasarathy, 1984)

Write N = {1,...,d}. Let H, Ly, SI" € B(H) be such that H= H* and S = (S/‘)kJE/\ is a unitary
operator on H @ C¥. Then the unitary Hudson-Parthasarathy Equation:

1
Up=1,  dUr=—iH+2> Lily | Uedt+ 3 LiUpdal(t)
ke ken
+ 3= S0 LSk | Uedab(r) + > (s,k - 5k,,/H) Urda®(t)
ken len k,leN

has a unique unitary solution on H ® d>((Cd).

We need a way to characterize when the noise in the previous equation is in fact a classical
noise.
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|
The Noise Algebra

Definition

For all t > 0, the Noise Algebra A:(U) is defined as the smallest von Neumann algebra on
®(C9) such that

Us € B(H)® Ae(U) YO<s<t
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|
The Noise Algebra

Definition
For all t > 0, the Noise Algebra A:(U) is defined as the smallest von Neumann algebra on

®(C9) such that
Us € B(H)® Ar(U) YO<s<t

@ It is a well-known result on von Neumann algebra that a commutative von Neumann
algebra is always isomorphic to a commutative algebra L>°(Q, F,P) for some probability
space (@, F,P);

o In this case, A¢(U) commutative for all t > 0 means that there exist a probability space
(2, F, (Ft)e>0,P) with a filtration (Ft):>0 on it such that:

At(U) = L>=(Q, Ft,P)
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|
The Noise Algebra

Definition
For all t > 0, the Noise Algebra A:(U) is defined as the smallest von Neumann algebra on

®(C9) such that
Us € B(H)® Ar(U) YO<s<t

@ It is a well-known result on von Neumann algebra that a commutative von Neumann
algebra is always isomorphic to a commutative algebra L>°(Q, F,P) for some probability
space (@, F,P);

o In this case, A¢(U) commutative for all t > 0 means that there exist a probability space
(2, F, (Ft)e>0,P) with a filtration (Ft):>0 on it such that:

At(U) = L>=(Q, Ft,P)

The problem is thus:

-
Z e

to associated the probability space with a stochastic process (Xt)¢>o on it (adapted to the
filtration);

1
2) to make the link with the Hudson-Parthasarathy Equation.

~—

to identify this process;
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The case of a commutative environment

Theorem

Suppose that A:(U.) is commutative. Then C¥ = Ky @ Kp and A can be split into two subsets
Aw and Ap such that the HP Equation takes the form:

dUs = —iHU:dt + dUY + dUF,
where UV and UF are respectively the solutions of the HP Equations:
1
duf = Y (_ELi Ul dt + Ly U}stf) , on H Q@ d(Kw)
kEAw

1
duy = > <75p§ (2l — Sk — S}) deterk(Skle)Uf}de), on H® &(Kp)
kep

where the Ly and the Sy are respectively selfadjoint and unitary operators on H, the py are
positive real numbers and

© (Bt)t>0 = (BE,--,BM™) is a real m-dimensional Brownian motion,
Q (Nt)i>o = (NE, ..., Nf) is a d — m-dimensional Poisson process, each coordinate Né‘ being of
intensity py.

© (Bt)t>0 and (Nt):>o are two independent processes.

4
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Some notions about the structure of the Fock space

o In the HP-Equation:

1
dU; = — (iH +3 > L;Lk> Uedt + > L Urdad(t)

ke ken

Ly (—zusf) Uedab(e) + 3 (SF = Serta) Uedal(t)

ke Ien k,JEA
a special role is played by the unitary operator on H ® C9 ~ H®9:

S = (5 )k,ren-
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Some notions about the structure of the Fock space

o In the HP-Equation:

1
dU; = — (iH +3 > L;Lk> Uedt + > L Urdad(t)

ke ke
+ 30 (=20l ) Uedab(0) + D7 (Sf = dkih) Uedal(e)
ken IeA k,IEN

a special role is played by the unitary operator on H ® C9 ~ H®9:

S = (5 )k,ren-

o If C? = K1 @ K>, then the probabilist Fock space can be factorized as:
o(C7) = o(K1) @ d(K2)
o If H® K; is stable by S, then the HP Equation takes the form:
dU; = —iHU¢dt + dU} + dU?
where Uy and U- are solutions of HP Equations on ®(K1) and ®(K3) respectively.
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Decomposition between a classical and a quantum part

Definition
Let K1 be a subspace of C? and write Ko = Ki-. We say that ®(K1) is a Commutative
Subsystem of the Environment if K1 # {0} and:

o both H® K1 and H ® K2 are stable by S. Consequently

dUy = —iHU:dt + dUL + dU?.

o A:(UY) is commutative.
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Decomposition between a classical and a quantum part

Definition

Let K1 be a subspace of C? and write K> = ICll. We say that ®(K1) is a Commutative
Subsystem of the Environment if K1 # {0} and:

o both H® K1 and H ® K2 are stable by S. Consequently
dUy = —iHU:dt + dUL + dU?.

o A:(UY) is commutative.

Theorem (Decomposition Theorem)

There exists a decomposition Cd =K. Kq, with Kc and KCq stable by S so that:
dUy = —iHU:dt + dUf + dU{

Furthermore U? does not have any Commutative Subsystem and, either KCc = {0}, or:
o d(Kc) is a Commutative Subsystem of the Environment.

o If K is a subspace of C? and ®(K) is a Commutative Subsystem of the Environment then K
is a subspace of K.
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Thank you for your attention
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