Classical and Quantum parts of the quantum dynamics

Ivan Bardet,

Institut Camille Jordan, Lvon

Mathematical Challenge in Quantum Mechanics, Bressanone February 10^{th} 2016

Time evolution of a close system

- Quantum system = Hilbert space $\mathcal{H} = \mathbb{C}^N$;
- ullet We write $\mathcal{B}(\mathcal{H})$ the Banach space of bounded linear maps on \mathcal{H} ;
- ullet The Hamiltonian of the system is given by a selfadjoint operator $H\in \mathcal{B}(\mathcal{H})$.

Schrödinger Equation

The time evolution is given by the equation:

$$dU_t = -itH \ U_t dt$$
$$U_0 = I_{\mathcal{H}}$$

The solution $(U_t)_{t\in\mathbb{R}}$ is a one-parameter group of unitary operators on \mathcal{H} :

- U_t is a unitary operator on \mathcal{H} for all $t \in \mathbb{R}$;
- $U_{t+s} = U_t U_s$ for all $s, t \in \mathbb{R}$, and $U_0 = I_{\mathcal{H}}$;
- $t \mapsto U_t$ is strongly continuous.

Main problem

How to model an open system

Time evolution of a close system

- Quantum system = Hilbert space $\mathcal{H} = \mathbb{C}^N$;
- We write $\mathcal{B}(\mathcal{H})$ the Banach space of bounded linear maps on \mathcal{H} ;
- ullet The Hamiltonian of the system is given by a selfadjoint operator $H\in \mathcal{B}(\mathcal{H}).$

Schrödinger Equation:

The time evolution is given by the equation:

$$dU_t = -itH \ U_t dt$$
$$U_0 = I_{\mathcal{H}}$$

The solution $(U_t)_{t\in\mathbb{R}}$ is a one-parameter group of unitary operators on \mathcal{H} :

- U_t is a unitary operator on \mathcal{H} for all $t \in \mathbb{R}$;
- $U_{t+s} = U_t U_s$ for all $s, t \in \mathbb{R}$, and $U_0 = I_{\mathcal{H}}$;
- $t \mapsto U_t$ is strongly continuous.

Main problem

How to model an open system

Time evolution of a close system

- Quantum system = Hilbert space $\mathcal{H} = \mathbb{C}^N$;
- We write $\mathcal{B}(\mathcal{H})$ the Banach space of bounded linear maps on \mathcal{H} ;
- ullet The Hamiltonian of the system is given by a selfadjoint operator $H\in \mathcal{B}(\mathcal{H}).$

Schrödinger Equation:

The time evolution is given by the equation:

$$dU_t = -itH \ U_t dt$$
$$U_0 = I_{\mathcal{H}}$$

The solution $(U_t)_{t\in\mathbb{R}}$ is a one-parameter group of unitary operators on \mathcal{H} :

- U_t is a unitary operator on \mathcal{H} for all $t \in \mathbb{R}$;
- $U_{t+s} = U_t U_s$ for all $s, t \in \mathbb{R}$, and $U_0 = I_{\mathcal{H}}$;
- $t \mapsto U_t$ is strongly continuous.

Main problem:

How to model an open system?

- Let $(X_t)_{t\geq 0}$ be a stochastic process on some probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ with value in \mathbb{R}^d :
- We can try to obtain a unitary solution to the following stochastic equation:

1-dimensional process:
$$dU_t = -(iH + A)U_t dt + BU_t dX_t$$
, $U_0 = I_H$,

d-dimensional process:
$$dU_t = -(iH + A) U_t dt + \sum_{k=1}^d B_k U_t dX_t^k,$$

where $A, B \in \mathcal{B}(\mathcal{H})$.

- $A, B, B_k \in \mathcal{B}(\mathcal{H})$, have to be **chosen** with the process (X_t) so that there exists a **unique unitary solution**.
- Main point of the talk: (X_t) has to be a **Brownian process** or a **Poisson process**. Then we also know the form of A and B.

Why it is a good method:

- It is a simple way to model an open system for which we do not need a new theory;
- It allows us to use the different tools from stochastic calculus.

Why it is not enough:

- We only get quantum open dynamics with a classical environment!
- We do not get an explicit construction of the environment.

Goal

- Let $(X_t)_{t\geq 0}$ be a stochastic process on some probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ with value in \mathbb{R}^d ;
- We can try to obtain a unitary solution to the following stochastic equation:

1-dimensional process:
$$dU_t = -\left(iH + A\right)U_tdt + BU_tdX_t, \quad U_0 = I_{\mathcal{H}},$$

d-dimensional process:
$$dU_t = -(iH + A) U_t dt + \sum_{k=1}^d B_k U_t dX_t^k,$$

where $A, B \in \mathcal{B}(\mathcal{H})$.

- $A, B, B_k \in \mathcal{B}(\mathcal{H})$, have to be **chosen** with the process (X_t) so that there exists a **unique unitary solution**.
- Main point of the talk: (X_t) has to be a **Brownian process** or a **Poisson process**. Then we also know the form of A and B.

Why it is a good method:

- It is a simple way to model an open system for which we do not need a new theory;
- It allows us to use the different tools from stochastic calculus.

Why it is not enough:

- We only get quantum open dynamics with a classical environment
- We do not get an explicit construction of the environment

Goal

- Let $(X_t)_{t\geq 0}$ be a stochastic process on some probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ with value in \mathbb{R}^d ;
- We can try to obtain a unitary solution to the following stochastic equation:

1-dimensional process:
$$dU_t = -\left(iH + A\right)U_tdt + BU_tdX_t, \quad U_0 = I_{\mathcal{H}},$$

d-dimensional process:
$$dU_t = -(iH + A) U_t dt + \sum_{k=1}^d B_k U_t dX_t^k,$$

where $A, B \in \mathcal{B}(\mathcal{H})$.

- $A, B, B_k \in \mathcal{B}(\mathcal{H})$, have to be **chosen** with the process (X_t) so that there exists a **unique** unitary solution.
- Main point of the talk: (X_t) has to be a **Brownian process** or a **Poisson process**. Then we also know the form of A and B.

Why it is a good method:

- It is a simple way to model an open system for which we do not need a new theory;
- It allows us to use the different tools from stochastic calculus.

Why it is not enough:

- We only get quantum open dynamics with a classical environment!
- We do not get an explicit construction of the environment.

Goal

- Let $(X_t)_{t\geq 0}$ be a stochastic process on some probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ with value in \mathbb{R}^d ;
- We can try to obtain a unitary solution to the following stochastic equation:

1-dimensional process:
$$dU_t = -(iH + A)U_t dt + BU_t dX_t$$
, $U_0 = I_H$,

d-dimensional process:
$$dU_t = -(iH + A) U_t dt + \sum_{k=1}^d B_k U_t dX_t^k,$$

where $A, B \in \mathcal{B}(\mathcal{H})$.

- $A, B, B_k \in \mathcal{B}(\mathcal{H})$, have to be **chosen** with the process (X_t) so that there exists a **unique unitary solution**.
- Main point of the talk: (X_t) has to be a **Brownian process** or a **Poisson process**. Then we also know the form of A and B.

Why it is a good method:

- It is a simple way to model an open system for which we do not need a new theory;
- It allows us to use the different tools from stochastic calculus.

Why it is not enough:

- We only get quantum open dynamics with a classical environment!
- We do not get an explicit construction of the environment.

Goal

Two examples: Brownian and Poisson processes

The case of a *d*-dimensional Brownian process $(B_t^1, ..., B_t^d)$:

$$A = \frac{1}{2} \sum_{k=1}^{d} L_k^2, \qquad L_k \in \mathcal{B}(\mathcal{H}), \quad L_k = L_k^*$$

$$B_k = L_k$$

The following equation admits a unique unitary solution:

$$dU_t = -\left(iH + \frac{1}{2}\sum_{k=1}^d L_k^2\right)U_tdt + \sum_{k=1}^d L_kU_tdB_t^k.$$

The case of a d-dimensional Poisson process of intensity $(N_t^1, ..., N_t^d)$, each coordinate of intensity ρ_k :

$$egin{align} A &= rac{1}{2} \sum_{k=1}^d
ho_k^2 (2l_{\mathcal{H}} - S_k - S_k^*), \qquad S_k \in \mathcal{B}(\mathcal{H}), \quad S_k S_k^* = l_{\mathcal{H}} \ B_k &=
ho_k (S_k - l_{\mathcal{H}}). \end{split}$$

The following equation admits a unique unitary solution

$$dU_{t} = -\left(iH + \frac{1}{2}\sum_{k=1}^{d}\rho_{k}^{2}(2I_{\mathcal{H}} - S_{k} - S_{k}^{*})\right)U_{t}dt + \sum_{k=1}^{d}\rho_{k}(S_{k} - I_{\mathcal{H}})U_{t}dN_{t}$$

Two examples: Brownian and Poisson processes

The case of a *d*-dimensional Brownian process $(B_t^1, ..., B_t^d)$:

$$A = \frac{1}{2} \sum_{k=1}^{d} L_k^2, \qquad L_k \in \mathcal{B}(\mathcal{H}), \quad L_k = L_k^*$$

$$B_k = L_k$$

The following equation admits a unique unitary solution:

$$dU_t = -\left(iH + \frac{1}{2}\sum_{k=1}^d L_k^2\right)U_tdt + \sum_{k=1}^d L_k U_tdB_t^k.$$

The case of a d-dimensional Poisson process of intensity $(N_t^1,...,N_t^d)$, each coordinate of intensity ρ_k :

$$A = \frac{1}{2} \sum_{k=1}^{d} \rho_k^2 (2I_{\mathcal{H}} - S_k - S_k^*), \qquad S_k \in \mathcal{B}(\mathcal{H}), \quad S_k S_k^* = I_{\mathcal{H}}$$

$$B_k = \rho_k (S_k - I_{\mathcal{H}})$$

The following equation admits a unique unitary solution:

$$dU_t = -\left(iH + \frac{1}{2}\sum_{k=1}^d \rho_k^2(2I_{\mathcal{H}} - S_k - S_k^*)\right)U_tdt + \sum_{k=1}^d \rho_k(S_k - I_{\mathcal{H}})U_tdN_t.$$

Random variable and their multiplication operators

Question: how can we integrate the classical setting inside the quantum one?

- Let X be a random variable on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where \mathbb{P} is the law of X;
- Remark that we can recover all the information we want about X with the functionals:

$$f \mapsto \mathbb{E}[f(X)], \qquad f \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$$

(moments, characteristic functions, etc...)

• These functionals can be written on the Hilbert space level: take $\mathcal{K}=L^2(\mathbb{P})$ with scalar product

$$\langle f,g \rangle = \int_{\Omega} \overline{f}g \ d\mathbb{I}$$

Then we have

$$\mathbb{E}[f(X)] = \langle \mathbb{1}, M_f \mathbb{1} \rangle,$$

where $\mathbb 1$ is the constant function equal to $\mathbb 1$ and M_f is the operator of multiplication by f:

$$M_f g = f g, \qquad f \in L^{\infty}(\mathbb{P}), \ g \in L^2(\mathbb{P}).$$

• Conclusion: We can replace the process X_t by its multiplication operator

Random variable and their multiplication operators

Question: how can we integrate the classical setting inside the quantum one?

- Let X be a random variable on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where \mathbb{P} is the law of X;
- ullet Remark that we can recover all the information we want about X with the functionals:

$$f \mapsto \mathbb{E}[f(X)], \qquad f \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$$

(moments, characteristic functions, etc...)

ullet These functionals can be written on the Hilbert space level: take $\mathcal{K}=L^2(\mathbb{P})$ with scalar product

$$\langle f,g \rangle = \int_{\Omega} \overline{f} g \ d\mathbb{P}$$

Then we have

$$\mathbb{E}[f(X)] = \langle \mathbb{1}, M_f \mathbb{1} \rangle,$$

where 1 is the constant function equal to 1 and M_f is the operator of multiplication by f:

$$M_f g = f g, \qquad f \in L^{\infty}(\mathbb{P}), \ g \in L^2(\mathbb{P}).$$

• Conclusion: We can replace the process X_t by its multiplication operator

Random variable and their multiplication operators

Question: how can we integrate the classical setting inside the quantum one?

- Let X be a random variable on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where \mathbb{P} is the law of X;
- ullet Remark that we can recover all the information we want about X with the functionals:

$$f \mapsto \mathbb{E}[f(X)], \qquad f \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$$

(moments, characteristic functions, etc...)

ullet These functionals can be written on the Hilbert space level: take $\mathcal{K}=L^2(\mathbb{P})$ with scalar product

$$\langle f,g \rangle = \int_{\Omega} \overline{f}g \ d\mathbb{P}$$

Then we have

$$\mathbb{E}[f(X)] = \langle \mathbb{1}, M_f \mathbb{1} \rangle,$$

where 1 is the constant function equal to 1 and M_f is the operator of multiplication by f:

$$M_f g = f g, \qquad f \in L^{\infty}(\mathbb{P}), \ g \in L^2(\mathbb{P}).$$

• Conclusion: We can replace the process X_t by its multiplication operator

The multiplication operator by the Brownian motion

 With the previous identification, it is possible to "identify" the Brownian motion with its multiplication operator:

$$M_{B_t^k}f = B_t^k f, \qquad f \in L^2(\Omega, \mathcal{F}, \mathbb{P}).$$

• Then we can formally write the stochastic Schrödinger Equation with a Brownian noise as:

$$dU_{t} = -(iH + \frac{1}{2}\sum_{i=1}^{d}L_{k}^{2})U_{t}dt + \sum_{i=1}^{d}L_{k}U_{t}M_{dB_{t}^{k}}, \qquad U_{0} = I_{T}$$

- It is no longer a stochastic differential equation. It is now an equation on the operator level, where there is nothing random! U_t is now a unitary operator on $\mathcal{H} \otimes L^2(\Omega, \mathcal{F}_t, \mathbb{P})$
- The quantum stochastic calculus developed by Hudson and Parthasarathy allows to give a meaning to this equation.

The multiplication operator by the Brownian motion

 With the previous identification, it is possible to "identify" the Brownian motion with its multiplication operator:

$$M_{B_t^k}f = B_t^k f, \qquad f \in L^2(\Omega, \mathcal{F}, \mathbb{P}).$$

• Then we can formally write the stochastic Schrödinger Equation with a Brownian noise as:

$$dU_{t} = -(iH + \frac{1}{2}\sum_{i=1}^{d}L_{k}^{2})U_{t}dt + \sum_{i=1}^{d}L_{k}U_{t} M_{dB_{t}^{k}}, \qquad U_{0} = I_{\mathcal{H}}$$

- It is no longer a **stochastic differential equation**. It is now an equation on the operator level, where there is nothing random! U_t is now a unitary operator on $\mathcal{H} \otimes L^2(\Omega, \mathcal{F}_t, \mathbb{P})$.
- The quantum stochastic calculus developed by Hudson and Parthasarathy allows to give a meaning to this equation.

The Probabilist Fock space

Definition

The d-multiple probabilist Fock space is define as:

$$\Phi(\mathbb{C}^d) = \mathcal{F}_{\mathcal{B}}(L^2(\mathbb{R}^+, \mathbb{C}^d)) = \bigoplus_{n \geq 0} L^2(\mathbb{R}^+, \mathbb{C}^d)^{\vee n} \approx L^2(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$$

• On this space, we consider the usual creation, annihilation and number operators:

$$a_k^0(t) = a^*(\mathbb{1}_{[0,t]}|e_k\rangle), \quad a_0^k(t) = a(\mathbb{1}_{[0,t]}\langle e_k|), \quad a_I^k(t) = a^\circ(\mathbb{1}_{[0,t]|e_I\rangle\langle e_k|}),$$

where (e_k) is an orthonormal basis of \mathbb{C}^d .

• The Hudson-Parthasarathy quantum stochastic calculus allows to integrate with respect to the **quantum noises**:

$$da_k^0(t) = a^*(\mathbb{1}_{[t,t+dt]}|e_k\rangle), \quad da_0^k(t) = a(\mathbb{1}_{[t,t+dt]}\langle e_k|), \quad da_l^k(t) = a^\circ(\mathbb{1}_{[t,t+dt]|e_l\rangle\langle e_k|}).$$

 \bullet $M_{B_{\mathbf{t}}^{k}}$ and $M_{N_{\mathbf{t}}^{k}}$ are given explicitly in terms of the quantum noises as:

$$M_{B_t} = a_k^0(t) + a_0^k(t),$$

$$M_{N_t} = a_k^0(t) + a_0^k(t) + a_k^k(t)$$
 (here the intensity is assumed to be 1).

ullet Consequently $M_{dB}{}^{k}$ reads:

$$M_{dB_t^k} = da_k^0(t) + da_0^k(t).$$

The Probabilist Fock space

Definition

The d-multiple probabilist Fock space is define as:

$$\Phi(\mathbb{C}^d) = \mathcal{F}_{\mathcal{B}}(L^2(\mathbb{R}^+, \mathbb{C}^d)) = \bigoplus_{n \geq 0} L^2(\mathbb{R}^+, \mathbb{C}^d)^{\vee n} \approx L^2(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$$

• On this space, we consider the usual creation, annihilation and number operators:

$$a_k^0(t) = a^*(\mathbb{1}_{[0,t]}|e_k\rangle), \quad a_0^k(t) = a(\mathbb{1}_{[0,t]}\langle e_k|), \quad a_I^k(t) = a^\circ(\mathbb{1}_{[0,t]|e_I\rangle\langle e_k|}),$$

where (e_k) is an orthonormal basis of \mathbb{C}^d .

• The Hudson-Parthasarathy quantum stochastic calculus allows to integrate with respect to the **quantum noises**:

$$da_k^0(t) = a^*(\mathbb{1}_{[t,t+dt]}|e_k\rangle), \quad da_0^k(t) = a(\mathbb{1}_{[t,t+dt]}\langle e_k|), \quad da_l^k(t) = a^\circ(\mathbb{1}_{[t,t+dt]|e_l\rangle\langle e_k|}).$$

• $M_{B_{\star}^{k}}$ and $M_{N_{\star}^{k}}$ are given explicitly in terms of the quantum noises as:

$$\begin{split} M_{B_t} &= a_k^0(t) + a_0^k(t), \\ M_{N_t} &= a_k^0(t) + a_0^k(t) + a_k^k(t) \qquad \text{(here the intensity is assumed to be 1)}. \end{split}$$

• Consequently $M_{dB_{c}^{k}}$ reads:

$$M_{dB_{\mathbf{t}}^{k}} = da_{k}^{0}(t) + da_{0}^{k}(t).$$

Workshop MCQM 2016 7 / 13

The Hudson-Parthasarathy Equation in the general situation

Main idea: The **quantum noises** behave nicely, in a way which is closed to classical noises. The quantum stochastic calculus is built with respect to those noises in a natural way.

Theorem (Hudson-Parthasarathy, 1984)

Write $\Lambda = \{1, ..., d\}$. Let $H, L_k, S_l^k \in \mathcal{B}(\mathcal{H})$ be such that $H = H^*$ and $\mathbb{S} = (S_l^k)_{k,l \in \Lambda}$ is a unitary operator on $\mathcal{H} \otimes \mathbb{C}^d$. Then the unitary Hudson-Parthasarathy Equation:

$$\begin{aligned} U_0 &= I, \qquad dU_t = -\left(iH + \frac{1}{2}\sum_{k\in\Lambda}L_k^*L_k\right)U_tdt + \sum_{k\in\Lambda}L_kU_tda_k^0(t) \\ &+ \sum_{k\in\Lambda}\left(-\sum_{l\in\Lambda}L_l^*S_l^k\right)U_tda_0^k(t) + \sum_{k,l\in\Lambda}\left(S_l^k - \delta_{k,l}I_{\mathcal{H}}\right)U_tda_l^k(t) \end{aligned}$$

has a unique unitary solution on $\mathcal{H} \otimes \Phi(\mathbb{C}^d)$.

We need a way to characterize when the noise in the previous equation is in fact a classical noise.

The Hudson-Parthasarathy Equation in the general situation

Main idea: The **quantum noises** behave nicely, in a way which is closed to classical noises. The quantum stochastic calculus is built with respect to those noises in a natural way.

Theorem (Hudson-Parthasarathy, 1984)

Write $\Lambda = \{1,...,d\}$. Let $H, L_k, S_l^k \in \mathcal{B}(\mathcal{H})$ be such that $H = H^*$ and $\mathbb{S} = (S_l^k)_{k,l \in \Lambda}$ is a unitary operator on $\mathcal{H} \otimes \mathbb{C}^d$. Then the unitary Hudson-Parthasarathy Equation:

$$\begin{aligned} U_0 &= I, \qquad dU_t = -\left(iH + \frac{1}{2}\sum_{k\in\Lambda}L_k^*L_k\right)U_tdt + \sum_{k\in\Lambda}L_kU_tda_k^0(t) \\ &+ \sum_{k\in\Lambda}\left(-\sum_{I\in\Lambda}L_I^*S_I^k\right)U_tda_0^k(t) + \sum_{k,I\in\Lambda}\left(S_I^k - \delta_{k,I}I_{\mathcal{H}}\right)U_tda_I^k(t) \end{aligned}$$

has a unique unitary solution on $\mathcal{H} \otimes \Phi(\mathbb{C}^d)$.

We need a way to characterize when the noise in the previous equation is in fact a classical noise.

The Hudson-Parthasarathy Equation in the general situation

Main idea: The **quantum noises** behave nicely, in a way which is closed to classical noises. The quantum stochastic calculus is built with respect to those noises in a natural way.

Theorem (Hudson-Parthasarathy, 1984)

Write $\Lambda = \{1,...,d\}$. Let $H, L_k, S_l^k \in \mathcal{B}(\mathcal{H})$ be such that $H = H^*$ and $\mathbb{S} = (S_l^k)_{k,l \in \Lambda}$ is a unitary operator on $\mathcal{H} \otimes \mathbb{C}^d$. Then the unitary Hudson-Parthasarathy Equation:

$$\begin{aligned} U_0 &= I, \qquad dU_t = -\left(iH + \frac{1}{2}\sum_{k\in\Lambda}L_k^*L_k\right)U_tdt + \sum_{k\in\Lambda}L_kU_tda_k^0(t) \\ &+ \sum_{k\in\Lambda}\left(-\sum_{l\in\Lambda}L_l^*S_l^k\right)U_tda_0^k(t) + \sum_{k,l\in\Lambda}\left(S_l^k - \delta_{k,l}I_{\mathcal{H}}\right)U_tda_l^k(t) \end{aligned}$$

has a unique unitary solution on $\mathcal{H} \otimes \Phi(\mathbb{C}^d)$.

We need a way to characterize when the noise in the previous equation is in fact a **classical noise**.

The Noise Algebra

Definition

For all t>0, the Noise Algebra $\mathcal{A}_t(U)$ is defined as the smallest von Neumann algebra on $\Phi(\mathbb{C}^d)$ such that

$$U_s \in \mathcal{B}(\mathcal{H}) \otimes \mathcal{A}_t(U) \qquad \forall 0 \leq s \leq t$$

- It is a well-known result on von Neumann algebra that a **commutative von Neumann** algebra is always isomorphic to a commutative algebra $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ for some probability space $(\Omega, \mathcal{F}, \mathbb{P})$;
- In this case, $A_t(U)$ commutative for all t>0 means that there exist a probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ with a filtration $(\mathcal{F}_t)_{t\geq 0}$ on it such that:

$$A_t(U) \approx L^{\infty}(\Omega, \mathcal{F}_t, \mathbb{P})$$

- The problem is thus:
- 1) to associated the probability space with a stochastic process $(X_t)_{t\geq 0}$ on it (adapted to the filtration);
- 1) to identify this process:
- 2) to make the link with the Hudson-Parthasarathy Equation.

The Noise Algebra

Definition

For all t>0, the **Noise Algebra** $\mathcal{A}_t(U)$ is defined as the **smallest von Neumann algebra** on $\Phi(\mathbb{C}^d)$ such that

$$U_s \in \mathcal{B}(\mathcal{H}) \otimes \mathcal{A}_t(U) \qquad \forall 0 \leq s \leq t$$

- It is a well-known result on von Neumann algebra that a **commutative von Neumann** algebra is always isomorphic to a commutative algebra $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ for some probability space $(\Omega, \mathcal{F}, \mathbb{P})$;
- In this case, $\mathcal{A}_t(U)$ commutative for all t>0 means that there exist a probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ with a filtration $(\mathcal{F}_t)_{t>0}$ on it such that:

$$\mathcal{A}_t(U) \approx L^{\infty}(\Omega, \mathcal{F}_t, \mathbb{P})$$

- The problem is thus:
- 1) to associated the probability space with a stochastic process $(X_t)_{t\geq 0}$ on it (adapted to the filtration);
- 1) to identify this process
- 2) to make the link with the Hudson-Parthasarathy Equation.

The Noise Algebra

Definition

For all t>0, the **Noise Algebra** $\mathcal{A}_t(U)$ is defined as the **smallest von Neumann algebra** on $\Phi(\mathbb{C}^d)$ such that

$$U_s \in \mathcal{B}(\mathcal{H}) \otimes \mathcal{A}_t(U) \qquad \forall 0 \leq s \leq t$$

- It is a well-known result on von Neumann algebra that a **commutative von Neumann** algebra is always isomorphic to a commutative algebra $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ for some probability space $(\Omega, \mathcal{F}, \mathbb{P})$;
- In this case, $\mathcal{A}_t(U)$ commutative for all t>0 means that there exist a probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ with a filtration $(\mathcal{F}_t)_{t>0}$ on it such that:

$$\mathcal{A}_t(U)\approx L^\infty(\Omega,\mathcal{F}_t,\mathbb{P})$$

- The problem is thus:
- 1) to associated the probability space with a stochastic process $(X_t)_{t\geq 0}$ on it (adapted to the filtration);
- 1) to identify this process;
- 2) to make the link with the Hudson-Parthasarathy Equation.

The case of a commutative environment

Theorem

Suppose that $\mathcal{A}_t(U)$ is commutative. Then $\mathbb{C}^d=\mathcal{K}_\mathbb{W}\oplus\mathcal{K}_\mathbb{P}$ and Λ can be split into two subsets $\Lambda_\mathbb{W}$ and $\Lambda_\mathbb{P}$ such that the HP Equation takes the form:

$$dU_t = -iHU_t dt + dU_t^{\mathbb{W}} + dU_t^{\mathbb{P}},$$

where $U^{\mathbb{W}}_{\cdot}$ and $U^{\mathbb{P}}_{\cdot}$ are respectively the solutions of the HP Equations:

$$dU_t^{\mathbb{W}} = \sum_{k \in \Lambda_{\mathbb{W}}} \left(-\frac{1}{2} L_k^2 U_t^{\mathbb{W}} dt + L_k U_t^{\mathbb{W}} dB_t^k \right), \text{ on } \mathcal{H} \otimes \Phi(\mathcal{K}_{\mathbb{W}})$$

$$dU_{t}^{\mathbb{P}} = \sum_{k \in \Lambda_{\mathbb{P}}} \left(-\frac{1}{2} \rho_{k}^{2} \left(2I_{\mathcal{H}} - S_{k} - S_{k}^{*} \right) U_{t}^{\mathbb{P}} dt + \rho_{k} \left(S_{k} - I_{\mathcal{H}} \right) U_{t}^{\mathbb{P}} dN_{t}^{k} \right), \text{ on } \mathcal{H} \otimes \Phi(\mathcal{K}_{\mathbb{P}})$$

where the L_k and the S_k are respectively selfadjoint and unitary operators on \mathcal{H} , the ρ_k are positive real numbers and

- $(B_t)_{t\geq 0}=(B_t^1,\cdots,B_t^m)$ is a real m-dimensional Brownian motion,
- **②** $(N_t)_{t\geq 0}=(N_t^1,...,N_t^d)$ is a d-m-dimensional Poisson process, each coordinate N_t^k being of intensity ρ_k .
- $(B_t)_{t\geq 0}$ and $(N_t)_{t\geq 0}$ are two independent processes.

Some notions about the structure of the Fock space

• In the HP-Equation:

$$\begin{split} dU_t &= -\left(iH + \frac{1}{2}\sum_{k \in \Lambda}L_k^*L_k\right)U_tdt + \sum_{k \in \Lambda}L_kU_tda_k^0(t) \\ &+ \sum_{k \in \Lambda}\left(-\sum_{l \in \Lambda}L_l^*S_l^k\right)U_tda_0^k(t) + \sum_{k,l \in \Lambda}\left(S_l^k - \delta_{k,l}I_{\mathcal{H}}\right)U_tda_l^k(t) \end{split}$$

a special role is played by the **unitary operator on** $\mathcal{H}\otimes\mathbb{C}^d\approx\mathcal{H}^{\oplus d}$:

$$\mathbb{S}=(S_I^k)_{k,I\in\Lambda}.$$

• If $\mathbb{C}^d = \mathcal{K}_1 \oplus \mathcal{K}_2$, then the probabilist Fock space can be factorized as:

$$\Phi(\mathbb{C}^d) = \Phi(\mathcal{K}_1) \otimes \Phi(\mathcal{K}_2)$$

ullet If $\mathcal{H}\otimes\mathcal{K}_1$ is stable by \mathbb{S} , then the HP Equation takes the form:

$$dU_t = -iHU_t dt + dU_t^1 + dU_t^2$$

where U_1 and U_2 are solutions of HP Equations on $\Phi(\mathcal{K}_1)$ and $\Phi(\mathcal{K}_2)$ respectively

Some notions about the structure of the Fock space

• In the HP-Equation:

$$\begin{split} dU_t &= -\left(iH + \frac{1}{2}\sum_{k \in \Lambda}L_k^*L_k\right)U_tdt + \sum_{k \in \Lambda}L_kU_tda_k^0(t) \\ &+ \sum_{k \in \Lambda}\left(-\sum_{l \in \Lambda}L_l^*S_l^k\right)U_tda_0^k(t) + \sum_{k,l \in \Lambda}\left(S_l^k - \delta_{k,l}I_{\mathcal{H}}\right)U_tda_l^k(t) \end{split}$$

a special role is played by the unitary operator on $\mathcal{H}\otimes\mathbb{C}^d\approx\mathcal{H}^{\oplus d}$:

$$\mathbb{S}=(S_I^k)_{k,I\in\Lambda}.$$

• If $\mathbb{C}^d = \mathcal{K}_1 \oplus \mathcal{K}_2$, then the probabilist Fock space can be factorized as:

$$\Phi(\mathbb{C}^d) = \Phi(\mathcal{K}_1) \otimes \Phi(\mathcal{K}_2)$$

• If $\mathcal{H} \otimes \mathcal{K}_1$ is stable by \mathbb{S} , then the HP Equation takes the form:

$$dU_t = -iHU_t dt + dU_t^1 + dU_t^2$$

where U_1 and U_2 are solutions of HP Equations on $\Phi(\mathcal{K}_1)$ and $\Phi(\mathcal{K}_2)$ respectively.

Decomposition between a classical and a quantum part

Definition

Let \mathcal{K}_1 be a subspace of \mathbb{C}^d and write $\mathcal{K}_2=\mathcal{K}_1^\perp$. We say that $\Phi(\mathcal{K}_1)$ is a Commutative Subsystem of the Environment if $\mathcal{K}_1\neq\{0\}$ and:

 \bullet both $\mathcal{H}\otimes\mathcal{K}_1$ and $\mathcal{H}\otimes\mathcal{K}_2$ are stable by $\mathbb{S}.$ Consequently

$$dU_t = -iHU_t dt + dU_t^1 + dU_t^2.$$

• $A_t(U^1)$ is commutative.

Theorem (Decomposition Theorem)

There exists a decomposition $\mathbb{C}^d=\mathcal{K}_c\oplus\mathcal{K}_q$, with \mathcal{K}_c and \mathcal{K}_q stable by $\mathbb S$ so that

$$dU_t = -iHU_t dt + dU_t^c + dU_t^q$$

Furthermore U^q does not have any Commutative Subsystem and, either $\mathcal{K}_c = \{0\}$, or:

- $\Phi(\mathcal{K}_c)$ is a Commutative Subsystem of the Environment
- If K is a subspace of \mathbb{C}^d and $\Phi(K)$ is a Commutative Subsystem of the Environment then K is a subspace of K_c .

Decomposition between a classical and a quantum part

Definition

Let \mathcal{K}_1 be a subspace of \mathbb{C}^d and write $\mathcal{K}_2=\mathcal{K}_1^\perp$. We say that $\Phi(\mathcal{K}_1)$ is a Commutative Subsystem of the Environment if $\mathcal{K}_1\neq\{0\}$ and:

• both $\mathcal{H}\otimes\mathcal{K}_1$ and $\mathcal{H}\otimes\mathcal{K}_2$ are stable by \mathbb{S} . Consequently

$$dU_t = -iHU_t dt + dU_t^1 + dU_t^2.$$

• $A_t(U^1)$ is commutative.

Theorem (Decomposition Theorem)

There exists a decomposition $\mathbb{C}^d=\mathcal{K}_c\oplus\mathcal{K}_q$, with \mathcal{K}_c and \mathcal{K}_q stable by $\mathbb S$ so that:

$$dU_t = -iHU_t dt + dU_t^c + dU_t^q$$

Furthermore U_c^q does not have any Commutative Subsystem and, either $K_c = \{0\}$, or:

- $\Phi(\mathcal{K}_c)$ is a Commutative Subsystem of the Environment.
- If K is a subspace of \mathbb{C}^d and $\Phi(K)$ is a Commutative Subsystem of the Environment then K is a subspace of K_c .

Thank you for your attention