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Effective evolution equations

N interacting bosons in 3 dimensions

Hilbert space
L2

s (R3N )

Hamilton operator

HN = −
N∑

j=1

∆xj +
N∑

i<j

VN (xi − xj )

Time evolution described by the exact N-body Schrödinger equation

i∂tψN,t = HNψN,t
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Effective evolution equations

Large N: describe the dynamics with an effective evolution equation

N-body linear Schrödinger equation −→ one-body non-linear effective equation

Physical phenomenon: Bose-Einstein condensation

N = 103 − 1010

At very low temperatures: ψN ' ϕ⊗N with ϕ ∈ L2(R3).

Dynamics:
ψN,t ' ϕ⊗N

t

where ϕt solves the effective Gross-Pitaevskii equation

i∂tϕt = −∆ϕt + 8πa0|ϕt |2ϕt .

Question: derivation, reliability of the effective equation.
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The dynamics

More precisely:

HN = −
N∑

j=1

∆xj +
1

N

N∑
i<j

N3βV (Nβ(xi − xj ))

V : repulsive, spherically symmetric interaction potential

0 < β < 1: Interpolation between mean field and Gross-Pitaevskii regime.

Dynamics:

Evolution of the density matrices: establishes the correct effective dynamics

Study Fluctuations around it: norm approximation of the evolution of the
initial state
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Previous Results

Previous results on time evolution of density matrices:

Erdős, Schlein, Yau 2006-2008: if 〈ψN ,HNψN〉 ≤ CN and γ
(1)
N → |ϕ〉〈ϕ|, then

γ
(1)
N,t → |ϕt〉〈ϕt |

where ϕt solves

i∂tϕt = −∆ϕt + 8πa0|ϕt |2ϕt for β = 1

i∂tϕt = −∆ϕt +

(∫
V

)
|ϕt |2ϕt for β < 1

Spohn 1980; Erdős, Yau 2002; Erdős, Schlein 2008

Pickl, Knowles 2009; Pickl 2010

With a second quantization method (Ginibre, Velo, Hepp)

Rodnianski, Schlein 2009; Chen, Lee, Schlein 2011 Mean field regime

Benedikter, de Oliveira, Schlein 2012 Gross-Pitaevskii regime
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Setting

Hamiltonian

HN =

∫
dx ∇x a∗x∇x ax +

1

2N

∫
dxdyN3βV (Nβ(x − y))a∗x a∗y ay ax = K+ VN

extended to Fock space

F =
⊕
n≥0

L2
s (R3n, dx1 . . . dxn)

ax , a∗x satisfy CCR

[ax , a
∗
y ] = δ(x − y), [ax , ay ] = [a∗x , a

∗
y ] = 0 .

Advantage of working in the Fock space → implement a certain structure on the
initial data
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Correlations

To describe correlations between particles, we consider the scattering equation.

Define fN,` as the solution of the eigenvalue problem on the ball of radius `:[
−∆ +

1

2N
N3βV (Nβx)

]
fN,` = λN,`fN,`

associated with the smallest eigenvalue λN,`, with b.c.:

fN,` = 1 for |x | = ` (normalized)

∂r fN,` = 0 for |x | = `

fN,` continued to R3: fN,` = 1 for all |x | ≥ `
(Neumann problem associated with the potential V 3β−1V (Nβ ·) on the ball of radius `
centered around the origin)
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Correlations

For 0 < β < 1 the many body evolution developes weaker correlations than in the
GP regime
−→ many body evolution approximated by the NLS, as N →∞

i∂tϕt = −∆ϕt +

(∫
V

)
|ϕt |2ϕt (1)

Two body correlations are anyway relevant in the analysis of fluctuations
−→ substitute the NLS with a more precise one

i∂ϕN
t = −∆ϕN

t + (N3βV (Nβ .)fN,` ∗ |ϕN
t |2)ϕN

t . (2)

In the limit N →∞, the solution of (2) approaches the solution of (1).
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How to implement the correlation structure

We apply

Weyl operator W (
√

Nϕ) = exp (a∗(
√

Nϕ)− a(
√

Nϕ))
to obtain a coherent state (condensate)

Bogoliubov transformation TN,t = exp
[

1
2

∫
dxdy

(
kN,t (x , y)a∗x a∗y − h.c.

)]
to implement the two body correlations

kernel: kN,t (x , y) = −N(1− fN,`(x − y))
(
ϕN

t ((x + y)/2)
)2

Initial data
W (
√

Nϕ)TN,0ξN

−→ It has approximately N particles and the effective evolution equation is (2).

Time evolution
e−iHN t W (

√
Nϕ)TN,0ξN

Ansatz: the modified coherent state structure is preserved by the dynamics
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How to implement the correlation structure

Fluctuation dynamics

UN (t, 0) = T∗N,t W ∗(
√

NϕN
t )e−iHN t W (

√
Nϕ)TN,0

satisfying
i∂tUN (t; s) = LN (t)UN (t; s)

Goal: Analyse fluctuations around the modified NLS.

Prove that the fluctuations dynamics has a quadratic generator in the
limit N →∞: approximate UN by an evolution U2,N with a quadratic generator
L2,N (t)

i∂tU2,N (t; s) = L2,N (t)U2,N (t; s) (3)

Use the quadratic fluctuation dynamics to obtain an approximation in norm of
the exact many-body evolution
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Previous results on fluctuations

On fluctuations in mean field regime (β = 0):

Hepp 1974; Ginibre, Velo 1979

Grillakis, Machedon, Margetis 2010, 2011

Chen 2012

Lewin, Nam, Serfaty, Solovej 2012

Ben Arous, Kirkpatrick, Schlein 2013

Buchholz, Saffirio, Schlein 2014

Lewin, Nam, Schlein 2014

For β > 0

Nam, Napiórkowski 2015: 0 < β < 1/3, with fixed number of particle state

Kuz 2015: 0 < β < 1/2 second quantization

Grillakis, Machedon, Margetis 2013, 2015: 0 < β < 2/3 second quantization
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Result

Theorem

Let V ≥ 0 be smooth and compactly supported. Fix 0 < β < 1 and ` > 0.
Consider ξN ∈ F such that

‖ξN‖ = 1 and 〈ξN ,
[
N 2 +K2 + VN

]
ξN〉 ≤ C uniformly in N.

Then there are C , c1, c2 > 0 such that, for α = min(β/2, (1− β)/2),∥∥∥e−iHN t W (
√

Nϕ) TN,0 ξN − e−i
∫ t

0 ηN (s)ds W (
√

NϕN
t )TN,t U2,N (t)ξN

∥∥∥2

≤ CN−α exp(c1 exp(c2|t|))

for all t ∈ R and all N large enough.
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Result

Under the same hypothesis of the theorem:

Proposition

Let UN be the fluctuation dynamics, and U2,N be the quadratic approximating
evolution. Then there exist C , c1, c2 > 0 such that∥∥∥UN (t; 0)ξN − e−i

∫ t
0 ηN (s)ds U2,N (t; 0)ξN

∥∥∥2
≤ CN−α exp(c1 exp(c2|t|))

for all t ∈ R and all N large enough.

The theorem is shown if we prove the proposition.
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Why a quadratic generator?

Full generator of UN (t; 0):

LN (t) = ηN (t) + L2,N (t) + VN + EN (t)

EN (t) consists of linear, cubic and quartic terms that are ”small”.

The generator of U2,N is quadratic; it represents the main part of the evolution.

L2,N (t) = (i∂t T∗N,t )TN,t + L(K)
2,N (t) + L(V )

2,N (t)

+
N

2

∫
dxdy ωN,`(x − y)

×
[
(ϕN

t ((x + y)/2)∆ϕN
t ((x + y)/2) + |∇ϕN

t ((x + y)/2)|2)a∗x a∗y + h.c.
]

+ Nλ`,N

∫
dxdy 1(|x − y | ≤ `)

[
(ϕN

t ((x + y)/2))2a∗x a∗y + h.c.
]

Why a quadratic generator? The approximating dynamics acts on the creation and
annihilation operator as a Bogoliubov transformation.
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Structure of the proof

Proof

Step 1: We write

d

dt

∥∥∥UN (t; 0)ξN − e−i
∫ t

0 ηN (s)ds U2,N (t; 0)ξN

∥∥∥2

= 2Im
〈
UN (t, 0)ξN , (LN (t)− L2,N (t)− ηN (t))︸ ︷︷ ︸

VN +EN (t)

e−i
∫ t

0 ηN (s)ds U2,N (t; 0)ξN

〉

Step 2: We estimate

|
〈
UN (t, 0)ξN , (VN + EN (t))U2,N (t; 0)ξN

〉
|

≤ CN−αeK |t|
[
〈UN (t; 0)ξN , (K+ VN +N + 1)UN (t; 0)ξN〉

+ 〈U2,N (t; 0)ξN , (K2 +N 2 + 1)U2,N (t; 0)ξN〉
]

Step 3: Control expectation values by Gronwall estimates (technical)
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Further considerations

Further observations

Our coherent state modified with a Bogoliubov transformation does not allow us
to find an approximation evolving in time with a quadratic generator for β = 1.
Different types of correlations are necessary.

About the ground state energy: how to construct the correct correlation
structure in order to approximate the ground state?
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Remark

It is possible to define a quadratic fluctuation dynamics U2,∞(t) independent on
N, satisfying

i∂tU2,∞(t; s) = L2,∞(t)U2,∞(t; s)

and to prove∥∥∥e−iHN t W (
√

Nϕ)TN,0ξN − e−i
∫ t

0 ηN (s)ds W (
√

NϕN
t )TN,t U2,∞(t)ξN

∥∥∥2

≤ CN−α exp(c1 exp(c2|t|))
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On the ground state:

Lieb, Seiringer, Yngvason 2000: for β = 1, as N →∞,
EN
N
−→ minϕ∈L2(R3),||ϕ||=1 EGP , where

EGP =

∫
dx(|∇ϕ(x)|2 + Vext(x)|ϕ(x)|2 + 4πa0|ϕ(x)|4)

a0 is the scattering length of V

Lieb, Seiringer 2002: for β = 1, as N →∞,

γ
(1)
N = Tr2,...,N |ΨN〉〈ΨN | → |ϕGP〉〈ϕGP |

where ΨN is the ground state and ϕGP is the minimizer of EGP

Lewin, Nam, Serfaty, Solovej 2012: β = 0, energy spectrum

Erdós, Schlein, Yau 2008: second order correction to the energy, soft potential

Lewin, Nam, Rougerie 2015: Nonlinear Schrödinger energy functional
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Between mean-field and Gross-Pitaevskii regime
β = 1/3: threshold between mean-field behaviour and GP

1

N

N∑
i<j

N3βV (Nβ(xi − xj ))

Particles interact when they are at a distance of the order N−β (Range of the
potential)

In a box of size 1, the mean interparticle distance is N−1/3

β < 1/3: mean-field behaviour prevails

When β > 1/3 the interaction gets more singular

β = 1: Rare but strong collisions

Probability of a collision: N · N−3β = N−3β+1

Intensity of the interaction: N3β−1
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Reduced density matrices
Density matrix

γN = |ψN〉〈ψN |

k-particle marginal density associated with ψN : partial trace over N − k particles

γ
(k)
N,t = Trk+1,...,NγN,t

The expectation value of k-particle observable A can be computed using only γ
(k)
N,t

〈ψN,t |(A[1,...,k] ⊗ 1(N−k))|ψN,t〉 = Tr γ
(k)
N,t A[1,...,k]

Convergence towards the effective dynamics:

γ
(k)
N,t → |ϕt〉〈ϕt |⊗k (4)

in the trace norm topology

Tr |γ(k)
N,t − |ϕt〉〈ϕt |⊗k | −→ 0 as N →∞ (5)
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Properties of the Weyl operator

W (ϕ)∗a(f )W (ϕ) = a(f ) + 〈f , ϕ〉

and
W (ϕ)∗ax W (ϕ) = a(f ) + ϕ(x)

Properties of the Bogoliubov transformation

T∗N,t a(f )TN,t = a(coshkN,t
f ) + a∗(sinhkN,t

f )

T∗N,t a∗(f )TN,t = a∗(coshkN,t
f ) + a(sinhkN,t

f )
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Generator L2,N

L2,N (t) = (i∂t T∗N,t )TN,t + L(K)
2,N (t) + L(V )

2,N (t) (6)

+
N

2

∫
dxdy ωN,`(x − y) (7)

×
[
(ϕN

t ((x + y)/2)∆ϕN
t ((x + y)/2) + |∇ϕN

t ((x + y)/2)|2)a∗x a∗y + h.c.
]

(8)

+ Nλ`,N

∫
dxdy 1(|x − y | ≤ `)

[
(ϕN

t ((x + y)/2))2a∗x a∗y + h.c.
]

(9)
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ηN (t) = N

∫
dxdyN3βV (Nβ(x − y))(1/2− fN,`(x − y))|ϕN

t (x)|2|ϕN
t (y)|2

+

∫
dxdy |∇x sinhkN,t

(x , y)|2 +

∫
dx(N3βV (Nβ .) ∗ |ϕN

t |2)(x)〈sN
x , s

N
x 〉

+

∫
dxdyN3βV (Nβ(x − y))ϕN

t (x)ϕ̄N
t (y)〈sN

x , s
N
y 〉

+ Re

∫
dxdy N3βV (Nβ(x − y))ϕN

t (x)ϕN
t (y)〈sN

x , c
N
y 〉

+
1

2N

∫
dxdyN3βV (Nβ(x − y))

[
|〈sN

x , c
N
y 〉|2 + |〈sN

x , s
N
y 〉|2 + 〈sN

y , s
N
y 〉〈sN

x , s
N
x 〉
]

(10)
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L(V )
2,N (t) =

∫
dx (N3βV (Nβ .) ∗ |ϕN

t |2)(x)

×
[
a∗(cN

x )a(cN
x ) + a∗(sN

x )a(sN
x ) + a∗(cN

x )a∗(sN
x ) + a(sN

x )a(cN
x )
]

+

∫
dxdyN3βV (Nβ(x − y))ϕN

t (x)ϕ̄N
t (y)

×
[
a∗(cN

x )a(cN
y ) + a∗(sN

y )a(sN
x ) + a∗(cN

x )a∗(sN
y ) + a(sN

x )a(cN
y )
]

+
1

2

∫
dxdyN3βV (Nβ(x − y))ϕN

t (x)ϕN
t (y)

×
[
a∗(cN

x )a(sN
y ) + a∗(cN

y )a(sN
x ) + a(sN

x )a(sN
y )
]

+
1

2

∫
dxdyN3βV (Nβ(x − y))ϕ̄N

t (x)ϕ̄N
t (y)

×
[
a∗(sN

y )a(cN
x ) + a∗(sN

x )a(cN
y ) + a∗(sN

x )a∗(sN
y )
]

+
1

2

∫
dxdyN3βV (Nβ(x − y))ϕN

t (x)ϕN
t (y)

[
a∗(pN

x )a∗y + a∗(cN
x )a∗(pN

y )
]

+
1

2

∫
dxdyN3βV (Nβ(x − y))ϕ̄N

t (x)ϕ̄N
t (y)

[
a(pN

x )ay + a(cN
x )a(pN

y )
]

(11)
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L(K)
2,N (t) =

∫
dx∇x a∗x∇x ax

+

∫
dx
[
a∗x a(−∆x pN

x ) + a∗(−∆x pN
x )ax + a∗(∇x pN

x )a(∇x pN
x )

+∇x a∗(kx )∇x a(kx ) + a∗(−∆x rN
x )a(kx ) + a∗(sN

x )a(−∆x rN
x )

+ a∗(−∆x pN
x )a∗(kx ) + a(kx )a(−∆pN

x ) + a∗x a∗(−∆x rN
x )

+ a(−∆x rN
x )ax + a∗(pN

x )a∗(−∆x rN
x ) + a(−∆x rN

x )a(pN
x )
]

(12)
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Step 2:

For |
〈
UN (t, 0)ξN ,VN U2,N (t; 0)ξN

〉
| we use the estimate

〈
UN (t, 0)ξN ,VN U2,N (t; 0)ξN

〉
≤

C

N1/2

〈
UN (t, 0)ξN ,VN UN (t; 0)ξN

〉1/2

×
(∫

dxdyN3βV (Nβ(x − y))
〈
UN (t, 0)ξN , a

∗
x a∗y ax ayUN (t; 0)ξN

〉)1/2

together with∫
dxdyN3βV (Nβ(x − y))‖ax ayψ‖2

≤ C

∫
dxdy‖∇x ax∇y ayψ‖2 + C

∫
dxdy‖∇x ax ayψ‖2

With similar methods

|〈ψ1, EN (t)ψ2〉| ≤ CN−αeK |t|[〈ψ1, (K+N + 1)ψ1〉

+ 〈ψ2, (K2 + (N + 1)2)ψ2〉
]

Remark: Only the estimate for 〈UN (t; 0)ξN , (K+ VN +N + 1)UN (t; 0)ξN〉 is not
enough for the fluctuation dynamics
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Step 3: We use now the Gronwall estimates

〈UN (t; 0)ψ, NUN (t; 0)ψ〉 ≤ C exp(c1 exp(c2|t|))〈ψ,
(
N +N 2/N +HN

)
ψ〉

|〈UN (t; 0)ψ, (LN (t)− ηN (t))UN (t; 0)ψ〉| ≤ C exp(c1 exp(c2|t|))〈ψ,
(
N +N 2/N +HN

)
ψ〉

and

〈U2,N (t; 0)ψ,NU2,N (t; 0)ψ〉 ≤ C exp(c1 exp(c2|t|))〈ψ, (N + 1)ψ〉

〈U2,N (t; 0)ψ,N 2U2,N (t; 0)ψ〉 ≤ C exp(c1 exp(c2|t|))〈ψ, (N + 1)2ψ〉

〈U2,N (t; 0)ψ,L2
2,N (t)U2,N (t; 0)ψ〉 ≤ C exp(c1 exp(c2|t|))〈ψ, (K+N + 1)2ψ〉

We obtain

d

dt

∥∥∥UN (t; 0)ξN − e−i
∫ t

0 ηN (s)ds U2,N (t; 0)ξN

∥∥∥2

≤ C exp(c1 exp(c2|t|))N−α〈ξN , (N 2 +K2 + VN )ξN〉

Integrating over time, we obtain∥∥∥UN (t; 0)ξN − e−i
∫ t

0 ηN (s)ds U2,N (t; 0)ξN

∥∥∥2
≤ CN−α exp(c1 exp(c2|t|))
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To get the norm approximation:∥∥∥e−iHN t W (
√

Nϕ)TN,0ξN − e−i
∫ t

0 ηN (s)ds W (
√

NϕN
t )TN,tU2,N (t; 0)ξN

∥∥∥2

=
∥∥∥W (

√
NϕN

t )TN,t

[
UN (t; 0)− e−i

∫ t
0 ηN (s)ds U2,N (t; 0)

]
ξN

∥∥∥2

=
∥∥∥[UN (t; 0)− e−i

∫ t
0 ηN (s)ds U2,N (t; 0)

]
ξN

∥∥∥2
≤ CN−α exp(c1 exp(c2|t|))
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Let V be smooth, positive, spherically symmetric and compactly supported with
b0 =

∫
Vdx . Let fN,` be the ground state of the Neumann problem

(
−∆ +

1

2
N3β−1V (Nβ ·)

)
fN,` = λN,`fN,` (13)

on the sphere of radius `, with the boundary conditions

fN,`(x) = 1 ∂r fN,`(x) = 0

for all x ∈ R3 with |x | = `. For N sufficiently large (such that RN−β < `) we have:

i) ∣∣∣∣λN,` −
3b0

8πN`3

∣∣∣∣ ≤ C

N2−β (14)

ii) There is a constant 0 < c0 < 1 such that, for all |x | ≤ `,

c0 ≤ fN,`(x) ≤ 1 (15)

iii) Let ωN,` = 1− fN,`. There exists a constant C > 0 such that, for all |x | ≤ `,

ωN,`(x) ≤
C

N(|x |+ N−β)
|∇ωN,`(x)| ≤

C

N(|x |2 + N−2β)
(16)
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Proposition ( Propagation of regularity for the NLS and modified NLS)

Let V be non-negative, smooth and spherically symetric. Let ϕ ∈ H1(R3) with
‖ϕ‖2 = 1.

i) There exist unique global solutions ϕN
. and ϕ. in C(R; H1(R3)) of (MGP) and,

respectively, of (GP) with initial data ϕ. The solutions are such that
‖ϕt‖2 = ‖ϕN

t ‖2 = ‖ϕ‖2 = 1 and

‖ϕt‖H1 , ‖ϕN
t ‖H1 ≤ C

for a constant C > 0 and all t ∈ R.

ii) Under the additional assumption that ϕ ∈ Hn(R3), for an integer n ∈ N, then
ϕt , ϕN

t ∈ Hn(R3) for all t ∈ R and there exist constants C > 0 (depending on
‖ϕ‖Hn and on n) and K > 0 (depending only on ‖ϕ‖H1 and on n) such that

‖ϕt‖Hn , ‖ϕN
t ‖Hn ≤ CeK |t|

for all t ∈ R.

iii) Let ϕ ∈ H4(R3). Then there exists C > 0 (depending on ‖ϕ‖H4 ) and K > 0
(depending only on ‖ϕ‖H1 ) such that

‖ϕ̇t‖H2 , ‖ϕ̈t‖2 ≤ CeK |t|
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Proposition (Convergence of the NLS to the modified NLS)

Under the same hypothesis as before:

i) Let ϕ ∈ H2(R3). Then there exist constants C , c1 > 0 (depending on ‖ϕ‖H2 ) and
c2 > 0 (depending only on ‖ϕ‖H1 ) such that

‖ϕt − ϕN
t ‖2 ≤ CN−γ exp(c1 exp(c2|t|)) with γ = min(β, 1− β).

ii) Let ϕ ∈ H4(R3). Then there exist constants C , c1 > 0 (depending on ‖ϕ‖H4 ) and
c2 > 0 (depending only on ‖ϕ‖H1 ) such that

‖ϕt −ϕN
t ‖H2 , ‖ϕ̇t − ϕ̇N

t‖2 ≤ CN−γ exp(c1 exp(c2|t|)) with γ = min(β, 1−β)
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