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SETTING AND EFFECTIVE EVOLUTION EQUATIONS
o

EFFECTIVE EVOLUTION EQUATIONS

N INTERACTING BOSONS IN 3 DIMENSIONS

o Hilbert space
L2(R3Y)
e Hamilton operator
N N
==Y 8y 13 Vils )
j=1 i<j
o Time evolution described by the ExAcT N-body Schrodinger equation

0t = HyYw, e




SETTING AND EFFECTIVE EVOLUTION EQUATIONS

(]
EFFECTIVE EVOLUTION EQUATIONS

Large N: describe the dynamics with an EFFECTIVE evolution equation

N-body linear Schrédinger equation — one-body non-linear effective equation

PHYSICAL PHENOMENON: BOSE-EINSTEIN CONDENSATION
o N=10%-10%
o At very low temperatures: ¢y ~ @®N  with ¢ € L2(R3).

e Dynamics:
N
VN, = 80(?

where ¢: solves the effective Gross-Pitaevskii equation

i8t<pt = —Agot + 87ra0|<pt|2<pt.

Question: derivation, reliability of the effective equation.




SCTIVE EVOLUTION EQUATIONS

THE DYNAMICS

More precisely:

N N
1
Hy=-> A+ 5 > NP V(NP (x; — x5))
j=1 i<j

o V: repulsive, spherically symmetric interaction potential

e 0 < B8 < 1: Interpolation between mean field and Gross-Pitaevskii regime.

DyNAMICS:

o Evolution of the DENSITY MATRICES: establishes the correct effective dynamics

o Study FLUCTUATIONS around it: norm approximation of the evolution of the
initial state




SETTING AND EFFECTIVE EVOLUTION EQUATIONS

PREVIOUS RESULTS

Previous results on time evolution of density matrices:

o Erdds, Schlein, Yau 2006-2008: if (¢, Hytbn) < CN and 4\ = |0)(¢], then
1
Y = lee) el
where ¢ solves

iOrpr = —Apr + 87ra0\<pt|2got for=1

iBrpr = —Apr + (/ v) loe|Por  for B <1

o Spohn 1980; Erdds, Yau 2002; Erdés, Schlein 2008
o Pickl, Knowles 2009; Pickl 2010
With a second quantization method (Ginibre, Velo, Hepp)
o Rodnianski, Schlein 2009; Chen, Lee, Schlein 2011 Mean field regime
o Benedikter, de Oliveira, Schlein 2012 Gross-Pitaevskii regime
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SCTIVE EVOLUTION EQUATIONS

SETTING

Hamiltonian
1
Hy = /dx VxayVxax + SN /dxdyNw V(NB(x — y))aiayayax = K+ Vy

extended to Fock space
F =D LER?, dx ... dxn)
n>0

ax, aj satisfy CCR

[ax,ay] =d(x—y),  [ax 3] =[a, 4] =0.

Advantage of working in the Fock space — implement a certain structure on the
initial data




SETTING AND E /E YUATIONS

CORRELATIS

To describe CORRELATIONS between particles, we consider the scattering equation.

Define fy ¢ as the solution of the eigenvalue problem on the ball of radius ¢:
1
—-A+ mN@B V(NPx)| fne = Anefue

associated with the smallest eigenvalue Ay ¢, with b.c.:

o fy¢ =1 for |x| = £ (normalized)
° Orfy =0 for x| =2¢
fy,¢ continued to R3: fne =1 forall [x| > £

(Neumann problem associated with the potential V3#—1V(NA.) on the ball of radius £
centered around the origin)




SETTING AND EFFECTIVE EVOLUTION EQUATIONS

oce
CORRELATIONS

@ For 0 < 8 < 1 the many body evolution developes weaker correlations than in the

GP regime
— many body evolution approximated by the NLS, as N — co

iOrpr = —Apr + (/ V) |‘Pt|24pt (1)

e Two body correlations are anyway relevant in the analysis of fluctuations
— substitute the NLS with a more precise one

il = —Dpl + (NP V(NP Yoo+ o Pl ()

In the limit N — oo, the solution of (2) approaches the solution of (1).




QUADRATIC APPROXIMATION

HOW TO IMPLEMENT THE CORRELATION STRUCTURE

We apply
o WEYL OPERATOR W(V/Nip) = exp (a* (V' Ng) — a(v/Nyp))
to obtain a coherent state (condensate)

o BOGOLIUBOV TRANSFORMATION Ty ; = exp [3 [ dxdy (kn,e(x,y)aza; —h.c.)]
to implement the two body correlations

kernel: kn,e(x,y) = =N(1 — fy ¢(x — y)) (W?I((X + }’)/2))2

Initial data
W(VNe@) T 0én

—> It has approximately N particles and the effective evolution equation is (2).

Time evolution )
e HNEW(VN) Ty o€

Ansatz: the modified coherent state structure is preserved by the dynamics




XIMATION

HOW TO IMPLEMENT THE CORRELATION STRU

FLUCTUATION DYNAMICS
Un(t,0) = Ty W*(VNol)e ™V W (VNp) Ty ,o

satisfying
iBfL{N(t; 5) = LN(t)Z/IN(t; S)

Goal: Analyse fluctuations around the modified NLS.

@ Prove that the fluctuations dynamics has a QUADRATIC GENERATOR IN THE
LIMIT N — oo: approximate Uy by an evolution Us y with a quadratic generator

£27N(t)

Ot n(t; s) = Lo n(t)Uo n(t; s) (3)

@ Use the quadratic fluctuation dynamics to obtain an APPROXIMATION IN NORM of
the exact many-body evolution




RESULT: QUADRATIC APPROXIMATION
L]

PREVIOUS RESULTS ON FLUCTUATIONS

On FLUCTUATIONS in mean field regime (8 = 0):
o Hepp 1974; Ginibre, Velo 1979
o Grillakis, Machedon, Margetis 2010, 2011
o Chen 2012
o Lewin, Nam, Serfaty, Solovej 2012
o Ben Arous, Kirkpatrick, Schlein 2013
@ Buchholz, Saffirio, Schlein 2014
o Lewin, Nam, Schlein 2014
For B3>0
o Nam, Napiérkowski 2015: 0 < 8 < 1/3, with fixed number of particle state
e Kuz 2015: 0 < 3 < 1/2 second quantization
o Grillakis, Machedon, Margetis 2013, 2015: 0 < 8 < 2/3 second quantization
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REsuLT

THEOREM

Let V > 0 be smooth and compactly supported. Fix 0 < 8 <1 and £ > 0.
Consider £y € F such that

lénll =1 and (En, [N? + K2+ Vy] én) < C  uniformly in N.

Then there are C, c1, ¢ > 0 such that, for « = min(8/2,(1 — B8)/2),

. . 2
e~ W(VN) Two én — e B8 W% W(VN) T o (0w |

< CN™% exp(c1 exp(ce2]t]))

for all t € R and all N large enough.




QUADRATIC APPROXIMATION

REsuLT

Under the same hypothesis of the theorem:
PROPOSITION

Let Uy be the fluctuation dynamics, and U n be the quadratic approximating
evolution. Then there exist C,c1,c; > 0 such that

.t 2
e 0)en — e~ 46 M 1, (1 0)én || < N expler exp(calt])

for all t € R and all N large enough.

The theorem is shown if we prove the proposition.




WHY A QUADRATIC GENERATOR?

o Full generator of Up(t;0):
Ly(t) = nn(t) + La,n(t) + Vi + En(t)

En(t) consists of linear, cubic and quartic terms that are "small”.

o The generator of U y is quadratic; it represents the main part of the evolution.
Lo n(t) = (10:T3y ) T + L5 (8) + LE3(D)
+5 /dxdy wn,e(x = y)
[(50 ((x+9)/2)200 ((x + ¥)/2) + [Vl (x + y)/2)]*)a%a; + h.c. ]

N [ drdy 1(0x = ] < 0) [(X((x -+ y)/2) 355 + b c}

Why a quadratic generator? The approximating dynamics acts on the creation and
annihilation operator as a Bogoliubov transformation.




PROOF AND Cc
L]

STRUCTURE OF THE PROOF

PROOF

Step 1: We write

= etz orn — e i % 1 (s 01|
= 2Im (Un(t, 0)én, (L (t) — Lon(t) —nn(t)) e Js WS 1, (1 0)en)

Vn+En(t)

Step 2: We estimate

[(Un(t,0)én, (Vv + En(t)) Uz, n(t; 0)En)|
< NI [ (£ 0)éw, (K + Vi + N + 1) (t; 0)én)

+ U (8 0)én, (K2 + N + 1 (£ 0)én) |

Step 3: Control expectation values by Gronwall estimates (technical)
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PROOF AND COMMENTS
o

FURTHER CONSIDERATIONS

Further observations
@ Our coherent state modified with a Bogoliubov transformation does not allow us
to find an approximation evolving in time with a quadratic generator for 8 = 1.
Different types of CORRELATIONS are necessary.

@ About the GROUND STATE ENERGY: how to construct the correct correlation
structure in order to approximate the ground state?
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Remark

o It is possible to define a quadratic fluctuation dynamics U5 o (t) independent on
N, satisfying
iatl/lz’oo(t; S) = [,2700(1‘)[/[2100(1'; S)

and to prove

. . 2
e M0 W) T — &3 109 W (3 i) Tt e (|

< CN™% exp(c1 exp(ez2]t]))




On the GROUND STATE:

Lieb, Seiringer, Yngvason 2000: for 8 =1, as N — oo,

En i
A~ Ming g 2(w3) ||p||=1 6P, Where

Eep = /dX(IV«?(X)I2 + Ve (x)|(x)|? + 4mao|o(x)[*)

ap is the scattering length of V
Lieb, Seiringer 2002: for 8 =1, as N — oo,

1
A = Tra V) (Wl = [per) (epl

where Wy is the ground state and ¢gp is the minimizer of Egp
Lewin, Nam, Serfaty, Solovej 2012: 8 = 0, energy spectrum

Erdds, Schlein, Yau 2008: second order correction to the energy, soft potential

Lewin, Nam, Rougerie 2015: Nonlinear Schrédinger energy functional




BETWEEN MEAN-FIELD AND GROSS-PITAEVSKII REGIME
B =1/3: threshold between mean-field behaviour and GP

N

1

5 2 NVV (x; — x))
i<j

o Particles interact when they are at a distance of the order N~ (Range of the
potential)

In a box of size 1, the mean interparticle distance is N—1/3

B < 1/3: mean-field behaviour prevails

°
3 = 1: Rare but strong collisions
Probability of a collision: N - N—38 = Ny—38+1
o Intensity of the interaction: N38-1

When 8 > 1/3 the interaction gets more singular




REDUCED DENSITY MATRICES
Density matrix

N = [Yn)(Ynl

k-particle marginal density associated with p: partial trace over N — k particles

()
t

Ine = Ok, NYN

(k)

The expectation value of k-particle observable A can be computed using only v

N, el(Ap,.. g @ 1N=R) ) = TTW;\;(,)tA[LH.,k]

Convergence towards the effective dynamics:

Tk = loe) (e | B (4)

in the trace norm topology

k
Tr g, — o) (@l ® — 0 as N — oo (5)




Properties of the Weyl operator

W(p)*a(f)W(p) = a(f) + (f, ¥)
and
W(e)* axW(p) = a(f) + p(x)
Properties of the Bogoliubov transformation

Tw,ca(f) Tw,e = a(coshy,, , f) + a*(sinhy, , 1)

T/T/,ta*(f)TN,t = a*(coshkN,t f)+ a(sinhkN't f)
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GENERATOR L3 p
Lon(t) = (0 T3 ) Twe + L35 (0) + LE0(0) (6)
+ g /dxdy wn,e(x =) (")
x [+ /2080 (x +¥)/2) + IVl (x + ) /2) P)aza; +he | (8)

W [ dedy Ux = y1 < 0 [(X((x+ y)/2) P + b Q)
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() = N [ ey V(N (x = ))(L/2 = fuax = Il 01 )
b [ I sinhy ()P o+ [ NIVIN) ¢ PGS 5
4 / dedyN38 V(NP (x — y))ol (x) B0 () (s, )

+Re / dxdy N3 V(NP (x — ) (x)o (v) (s, )

(10)

+ ﬁ/dxdyNw V(Nﬁ(x—y))[l(sﬁ,cy>|z+ (s, Y2 4 (Y, sy (s N>]

y 2 2y x5 Sx
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200 = [ ax(BPVNE ) « )00
x [a*(c)a(c) + a* (st)a(sl) + a* ()™ (V) + a(s)a(cl)]
b [ VN (- )l (0B )
x [a*(c)ale)) + a* (sP)a(sl) + a* (cl)a* () + a(s)a( <))

+ 1 / dxdyN3P V(NP (x — y))el ()t (v)
2 (11)

x [a*(cM)als) + a* (P)a(sl) + a(s)a(s)) |

45 [ VN (- )l (B )
x [a*(sf)a(c) + o (st)a(c)') + a" (st)a" (s]))]

5 [ VN (= )l (el ) [ (o) + o (e)a ()]

NI= N =

w5 [ BNV = ) B) [ap)ay + a(Malo)
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MOE / dxV,a% Vyax

+ [ o [ata(-Bupl) + " (< Acpl)ac+ 2" (Tupl (V)

12
+ Vxa* (k«)Vxa(ks) + a*(fAXrXN)a(kX) + a*(s)?’)a(fAXriv) (12)
+a"(—AxpY)a* (k) + a(ke)a(—ApY) + axa™ (—Axrl)

+ a(—Bxr)ax + 3" (P)a (= Barl) + a(—Bxr)a(pl)]
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Step 2:
o For [(Un(t,0)én, Vv o n(t;0)én)| we use the estimate

C
(Un (£ 0)n, Vi o, (8 0)En) < 75 (Un(t.0)én, VivLn (£ 0)w) "

(/ dxdyN38 V(NP (x — y))(Un(t,0)En, a%a) axayUn(t; 0)5,\,>)1/2
together with
[ VNG (x = ) aay
< € [ dxdyIV.a a1 + C [ eyl Tana, v

@ With similar methods

(w1, En(t)a)| < CNT*eXI (g1, (K + N + 1)yn)
+ (12, (K2 + (N +1)?)o)]

Remark: Only the estimate for (Upy(t;0)¢n, (K + Vy + N + 1)Upn(t; 0)Ep) is not
enough for the fluctuation dynamics
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Step 3: We use now the Gronwall estimates

(Un(t;0), NUn(t; 0)1p) < Cexp(crexp(ca|t]|)) (¥, (N+N2/N +Hn) ¥)
[(Un(t: 0), (La(t) — nn(E))Un(t; 0)9)| < Cexp(crexp(cz|t])) W, (N + N2/N +Hpy) ¥)

and
Uz, n(t;0)1p, NUa, (¢ 0)3) < Cexp(cr exp(c2|t])) (¥, (N + 1))
(U, n(t;0)0, N2y (£: 0)p) < Cexp(cy exp(calt])) (¥, (N + 1)%4))
(Up,n(t; 0), L3 p(£)Uo (£ 0)) < Cexp(cr exp(calt])) (¥, (K + N + 1)%¢)
We obtain

d st 2
5 HUN(t; 0)éy —e ' o (1 p(t; 0)§NH
< Cexp(crexp(ca|t]) )N~ (En, (N2 + K2 4 Vi )én)

Integrating over time, we obtain

. 2
et (t: 036w — &8 M 1, (15 0)6w||” < N exp(cr exp(cal )
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To get the norm approximation:
_ it 2
[ W i) T — &7 055 W (R To e 50|
. 2
= || W/NGl) T [thn(2:0) — e=7J5 %04y p(2:0)] e

= [[[pne:0) — &7 5 9 1 1 (5;0)] | < N expler expleale))
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Let V be smooth, positive, spherically symmetric and compactly supported with
by = [ Vdx. Let fn,e be the ground state of the Neumann problem

1
(-a+ 5N3'8_1V(N5~))f,\,7,_7 = A efwe (13)

on the sphere of radius ¢, with the boundary conditions
fN,[(X) =1 8rfN’g(X) =0

for all x € R3 with |x| = £. For N sufficiently large (such that RN~=# < £) we have:

1)
3bg C
Ave— —R < = 14
VAT BrNez | = N2—F (14)
11) There is a constant 0 < ¢p < 1 such that, for all |x| < ¥,
co < fve(x) <1 (15)

1) Let wy g =1— fy¢. There exists a constant C > 0 such that, for all |x| </,

C C

< = v <
S EETED [Vwn,e(x)] < N

T B

wn,e(x)
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PROPOSITION ( PROPAGATION OF REGULARITY FOR THE NLS AND MODIFIED NLS)

Let V' be non-negative, smooth and spherically symetric. Let o € H*(R3?) with
lloll2 = 1.

1)

11)

111)

There exist unique global solutions " and ¢ in C(R; HY(R3)) of (MGP) and,
respectively, of (GP) with initial data ¢. The solutions are such that
lpellz = oIl = llella = 1 and

lpell s ol < €

for a constant C > 0 and all t € R.

Under the additional assumption that ¢ € H"(R3), for an integer n € N, then

t, N € H"(R3) for all t € R and there exist constants C > 0 (depending on

ll¢|lun and on n) and K > 0 (depending only on ||¢||y1 and on n) such that
l@tllmm, 1 [l < CeX1]

for all t € R.

Let o € H*(R3). Then there exists C > 0 (depending on ||¢||y4) and K > 0
(depending only on ||¢|| 1) such that

Kt

loell 2, lPell2 < Ce




PROPOSITION (CONVERGENCE OF THE NLS TO THE MODIFIED NLS)

Under the same hypothesis as before:

1) Let ¢ € H2(R3). Then there exist constants C,c1 > 0 (depending on ||| y2) and
¢ > 0 (depending only on ||| y1) such that

e — @l < N7 explcr explcall)  with v = min(8,1 - B).

11) Let p € H*(R3). Then there exist constants C,c1 > 0 (depending on ||| ya) and
¢ > 0 (depending only on ||| 1) such that

e — N llpes lloe — @V illa < CN™7 exp(crexp(calt]))  with v = min(8,1— 3)
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