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Presentation’s route:

1. Tight binding model for the graphene Hamiltonian.

2. Spectral bounds for the non self-adjoint case.

3. Conclusion and remarks.



1.1 Tight-binding model

Lattice structure with {Rm | Sites Position} −→ Bloch’s Theorem

Hydrogen like : φj ’Basis function’

Generalized Orbiltals : Φj(k, r) =
1√
N

N∑
m=1

ei k·Rmφj(r − Rm)

The index j− distinguishes among different types of orbital shapes.

Energy of the j-th band:

Ej(k) =
〈Φj |H|Φj〉
〈Φj |Φj〉

−→ det(H − EjS) = 0.



1.1 Tight-binding model

Lattice structure with {Rm | Sites Position} −→ Bloch’s Theorem

Hydrogen like : φj ’Basis function’

Generalized Orbiltals : Φj(k, r) =
1√
N

N∑
m=1

ei k·Rmφj(r − Rm)

The index j− distinguishes among different types of orbital shapes.

Energy of the j-th band:

Ej(k) =
〈Φj |H|Φj〉
〈Φj |Φj〉

−→ det(H − EjS) = 0.



1.2 A bit of fancy...

In graphene, each site of the lattice corresponds to a carbon atom
which has 4 valence electrons: only one turns out to be free to
conduct.



1.3 The Hamiltonian

The index of the independent orbitals runs among j = A,B:

H =

(
ε2pz −γ0f (k)

−γ0f ∗(k) ε2pz

)

where:

ε2pz is the onsite energy γ0f (k) is the hopping energy,

f (k) = eiky
a√
3 + 2e−iky

a
2
√

3 cos
(
kx

a
2

)
≈ −
√
3a
2~ (±px − ipy ).

E± =
ε2pz ± γ0|f (k)|
1± S0|f (k)|



1.4 The continuous model

2D Single-layer graphene:

H0,1 = v
(

0 px − ipy
px + ipy 0

)
(2D-Dirac )

2D Bi-layer graphene : (tight binding model )

H =


ε2p −γ0f (k) 0 0

−γ0f ∗(k) ε2p γ1 0
0 γ1 ε2p −γ0f (k)
0 0 −γ0f ∗(k) ε2p


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1.5 In summary

2D Single-layer graphene:

H0,1 = v
(

0 px − ipy
px + ipy 0

)
(2D-Dirac )

2D Bi-layer graphene:

H0,2 = − 1
2m

(
0 (px − ipy )2

(px + ipy )2 0

)
(2D Dirac-like )

Both the models share a pseudo-spin interpretation of charge distribution.



2.1 2D Bilayer operator

We want to study the spectral properties of D = Dτ + V in
L2(R2)⊗ C2 where:

Dτ =

(
τ 4∂2

z̄
4∂2

z −τ

)
endowed with an external non-Hermitian potential V = (Vij).

We recall:

∂z̄ =
1
2
( ∂

∂x1
+ i ∂

∂x2

)
, ∂z =

1
2
( ∂

∂x1
− i ∂

∂x2

)
are the usual Wirtinger derivatives.



2.2 Bound for complex eigenvalues: 1D Dirac

Theorem (J-C.Cuenin, A.Laptev, C.Tretter)
Consider the operator H = H0 +V is defined on L2(R)⊗C2 where:

H0 = −i ddx σ1 + mc2σ3, σ1 :=

(
0 1
−1 0

)
, σ3 :=

(
1 0
0 −1

)

V = (Vij)
2 with Vij ∈ L1(R) for i , j = 1, 2 s.t.

‖V ‖1 =

∫
R
|V (x)| dx =

∫
R

( ∑
i ,j=1...,2

|Vij(x)|2
)1/2

dx < 1

Then every non-embedded eigenvalue z ∈ C \ σ(H0) of H lies in a
region R which is the disjoint union of two disks

z ∈ R := D(mx0, |mr0|) ∪ D(−mx0, |mr0|).



2.2 Bound for complex eigenvalues: 1D Dirac

x0 :=

√
‖V ‖41 − 2‖V ‖21 + 2

4(1− ‖V ‖21)
+

1
2 r0 :=

√
‖V ‖41 − 2‖V ‖21 + 2

4(1− ‖V ‖21)
− 1

2

Question:
Is it possible to determine a similar kind of bound for the bilayer
case?
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2.3 Bound for complex eigenvalues: 2D Bilayer

Theorem
Let k /∈ σ(Dτ ) be a complex eigenvalue of the operator
D = Dτ + V and consider 1 < p < 4/3. Then:

C ω(k, τ)p

|µ|p−1

∫
R2
|V (x)|pdx ≥ 1

where C is independent from V and k, and where we set:

µ2 = k2 − τ2, ω(k, τ) =
(√∣∣∣k − τk + τ

∣∣∣+

√∣∣∣k + τ

k − τ

∣∣∣+ 1
)
.

In particular if τ = 0, then:

|k|p−1 ≤ C
∫
R2
|V (x)|pdx .



2.4 Bound for complex eigenvalues: 2D Bilayer

Theorem
Let k /∈ σ(Dτ ) be a complex eigenvalue of the operator
D = Dτ + V and consider 1 < p < 4/3.
Then:

C
(
| ln |µ|| sup

x∈R2

∫
|x−y |<(2|µ|)−1

|V (y)| dy+

sup
x∈R2

∫
R2

(
1 + | ln |x − y ||

)
|V (y)|dy+

+ ω(k, τ)

∫
R2
|V (x)|dx

)
≥ 1.

If τ = 0 then for small potential:

r ≈ exp
(
− C∫
|V |dx

)
as

∫
|V |dx → 0.
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2.5 Bound for complex eigenvalues: 2D Bilayer

Theorem
Let k /∈ σ(Dτ ) be an eigenvalue of the operator D = Dτ + V with
V = iW 2 such that Wi ,j ≥ 0. Then Re(k) > 0 and it holds:

(
C
(∣∣∣k + τ

k − τ − 1
∣∣∣+

∣∣∣k − τk − τ − 1
∣∣∣)+ 1

)π
4

∫
R2

tr|V |dx ≥ 1, (1)

where the constant C is independent of V and k.
If τ = 0 and

π

4

∫
R2

tr|V |dx < 1, (2)

then the operator D = D0 + V does not have eigenvalues outside
of the real line R, i.e. the spectrum of D is real.
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First theorem proof sketch:

Consider the polar decomposition V = U|V | for the potential:

V = BA =
(
U|V |1/2

)
|V |1/2

The proof is based on the Birman-Schwinger’s principle:
I k is an eigenvalue of H if and only if −1 is an eigenvalue of:

Q(k) := A(Dτ − k)−1B : H → H, k ∈ ρ(Dm).

where Q(k) is a bounded Hilbert-Schmidt operator.

So it follows that if k ∈ ρ(H0):

I if k is an eigenvalue of H then ‖Q(k)‖ ≥ 1.
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First theorem proof sketch:

We use the following factorization:

(Dτ − k)−1 = (τσ3 + k − µ)(∆2 − µ2)−1 + (D0 + µ)(∆2 − µ2)−1

where µ2 = k2 − τ2.

The resolvent kernel of the bi-harmonic operator (∆2 − µ2)−1 is
explicit:

gµ(x , y) =
i
8µ
(
H(1)

0 (
√
µ|x − y |)− H(1)

0 (i√µ|x − y |)
)
.

So that the kernel of (D0 − k)−1 reads as:

ρµ(|x − y |) =

(
µ gµ(x , y) ∂2

z̄ gµ(x , y)
∂2

z gµ(x , y) µgµ(x , y)

)



First theorem proof sketch:

Let’s consider µ = eiθ

|gθ(r)| ≈ r2| log(r)| r ≤ 1/2
|gθ(r)| ≈ 1/

√
r r > 1/2

...so that the constraint 1 < p < 4/3 appears

||A(D0 − k)−1B||p ≤ C 1
|µ|p−1

∫
R2
|V (x)|pdx , µ2 = k2 −m2.

||A(D0 + k)(∆2 − µ2)−1B||p ≤ C

(
ω(k,m)− 1

)p

|µ|p−1

∫
R2
|V (x)|pdx .

where C is actually dependent on an integral estimate for the
kernel ρµ(|x − y |) but independent from k and V .
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3.1 Final remarks and conclusion

? We can extend the result to all real p > 1, introducing the
hypothesis of k lying in a sector of the complex plane which
doesn’t contain the real positive axis.

? It’s reasonable to expect an improvement in the kernel decay
at zero:

|gθ(r)| ≈ r2+ε| log(r)| r ≤ 1/2

? The operator on bounded domains requires different boundary
conditions depending on the different cut operated to the
lattice.
Ref.[Freitas, Seigl(2012)]



Thank you!









3.Oscillating random potential

Figure : Image obtained with KWANT python package.

Two different type of potential:
S Static: Due to imperfections of graphene.
D Dynamic: Due to the presence of an oscillating in time

potential, for example induced by water molecules.



3.Oscillating random potential

Our meaningful property will be the Transmission.
In order to define it we consider the system in a general electronic
state before and after the scattering:

ΨOUT = S ·ΨIN

where ΨIN/OUT are the open channel and

S =

(
r t ′
t r ′

)
Scattering matrix

The Transmission is defined by:

T =
Nc∑
i ,j

tijt†ij = Tr tt† Transmission
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3.Oscillating random potential

Lorentzian distribution:

L(αr , βr )(x) =
1

πβr
(
1 + ( x−αr

βr
)2
)

S Roughness: βr = 0.13, αr = 0.05
D Water: βw = 0.0625, αw = 0.025

Energy on each site:

Ej(t) = L(
αj
2 , βw )(t)

which is depending on time t.



3.Oscillating random potential

Lorentzian distribution:

L(αr , βr )(x) =
1

πβr
(
1 + ( x−αr

βr
)2
)

S Roughness: βr = 0.13, αr = 0.05
D Water: βw = 0.0625, αw = 0.025

Energy on each site:

Ej(t) = L(
αj
2 , βw )(t)

which is depending on time t.



3.Oscillating random potential



3.Oscillating random potential
Why Lorentzian?

Are the time average of all the transmissions and the transmission
of an average state comparable?

〈Transmission(Ψt)〉 ?
= Transmission(〈Ψt〉)

What is the average state 〈Ψt〉? It is a Lorentzian distribution!
If we consider a complex potential s.t.

Ej =
αj
2 + iβw ,

then

DOS(Ej) = lim
ε→0

[
Im 1

Ej − (
αj
2 + iβw ) + iε

(
Ej + (

αj
2 + iβw ) + iε

Ej + (
αj
2 + iβw ) + iε

)]

=
1

πβ2
w

βw
(Ej − αj

2 )2 + β2
w

= L(
αi
2 , βw )(Ej)
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3.Oscillating random potential

I Good qualitative response!
I Unfortunately there’s a quantitative gap.


