SPECTRAL ANALYSIS FOR THE BI-LAYER TWO-DIMENSIONAL GRAPHENE OPERATOR

MCQM

Bressanone, 12th February 2016

Francesco Ferrulli

Joint work with A.Laptev and O.Safronov

Imperial College London
Centre for Doctoral Training Mathematics of Planet Earth

Presentation's route:

1. Tight binding model for the graphene Hamiltonian.
2. Spectral bounds for the non self-adjoint case.
3. Conclusion and remarks.

1.1 Tight-binding model

Lattice structure with $\left\{R_{m} \mid\right.$ Sites Position $\} \longrightarrow$ Bloch's Theorem

Hydrogen like: $\quad \phi_{j} \quad$ 'Basis function'
Generalized Orbiltals : $\Phi_{j}(k, r)=\frac{1}{\sqrt{N}} \sum_{m=1}^{N} e^{i k \cdot R_{m}} \phi_{j}\left(r-R_{m}\right)$
The index j - distinguishes among different types of orbital shapes.

1.1 Tight-binding model

Lattice structure with $\left\{R_{m} \mid\right.$ Sites Position $\} \longrightarrow$ Bloch's Theorem

Hydrogen like: $\quad \phi_{j} \quad$ 'Basis function'
Generalized Orbiltals : $\Phi_{j}(k, r)=\frac{1}{\sqrt{N}} \sum_{m=1}^{N} e^{i k \cdot R_{m}} \phi_{j}\left(r-R_{m}\right)$
The index j - distinguishes among different types of orbital shapes.

Energy of the j-th band:

$$
E_{j}(k)=\frac{\left\langle\Phi_{j}\right| H\left|\Phi_{j}\right\rangle}{\left\langle\Phi_{j} \mid \Phi_{j}\right\rangle} \quad \longrightarrow \operatorname{det}\left(H-E_{j} S\right)=0
$$

1.2 A bit of fancy...

In graphene, each site of the lattice corresponds to a carbon atom which has 4 valence electrons: only one turns out to be free to conduct.

side view

top view

1.3 The Hamiltonian

The index of the independent orbitals runs among $j=A, B$:

$$
H=\left(\begin{array}{cc}
\epsilon_{2 p_{z}} & -\gamma_{0} f(k) \\
-\gamma_{0} f^{*}(k) & \epsilon_{2 p_{z}}
\end{array}\right)
$$

where:
$\epsilon_{2 p_{z}}$ is the onsite energy $\quad \gamma_{0} f(k)$ is the hopping energy,

$$
f(k)=e^{i k_{y} \frac{a}{\sqrt{3}}}+2 e^{-i k_{y} \frac{a}{2 \sqrt{3}}} \cos \left(k_{x} \frac{a}{2}\right) \approx-\frac{\sqrt{3} a}{2 \hbar}\left(\pm p_{x}-i p_{y}\right)
$$

$$
E_{ \pm}=\frac{\epsilon_{2 p_{z}} \pm \gamma_{0}|f(k)|}{1 \pm S_{0}|f(k)|}
$$

1.4 The continuous model

2D Single-layer graphene:

$$
\left.H_{0,1}=v\left(\begin{array}{cc}
0 & p_{x}-i p_{y} \\
p_{x}+i p_{y} & 0
\end{array}\right) \quad \text { (2D-Dirac }\right)
$$

1.4 The continuous model

2D Single-layer graphene:

$$
H_{0,1}=v\left(\begin{array}{cc}
0 & p_{x}-i p_{y} \\
p_{x}+i p_{y} & 0
\end{array}\right) \quad(2 \mathrm{D}-\text { Dirac })
$$

2D Bi-layer graphene : (tight binding model)

$$
H=\left(\begin{array}{cccc}
\epsilon_{2 p} & -\gamma_{0} f(k) & 0 & 0 \\
-\gamma_{0} f^{*}(k) & \epsilon_{2 p} & \gamma_{1} & 0 \\
0 & \gamma_{1} & \epsilon_{2 p} & -\gamma_{0} f(k) \\
0 & 0 & -\gamma_{0} f^{*}(k) & \epsilon_{2 p}
\end{array}\right)
$$

2D Single-layer graphene:

$$
H_{0,1}=v\left(\begin{array}{cc}
0 & p_{x}-i p_{y} \\
p_{x}+i p_{y} & 0
\end{array}\right) \quad(2 D-D i r a c)
$$

2D Bi-layer graphene:

$$
H_{0,2}=-\frac{1}{2 m}\left(\begin{array}{cc}
0 & \left(p_{x}-i p_{y}\right)^{2} \\
\left(p_{x}+i p_{y}\right)^{2} & 0
\end{array}\right) \quad \text { (2D Dirac-like) }
$$

Both the models share a pseudo-spin interpretation of charge distribution.

2.1 2D Bilayer operator

We want to study the spectral properties of $D=D_{\tau}+V$ in $L^{2}\left(\mathbb{R}^{2}\right) \otimes \mathbb{C}^{2}$ where:

$$
D_{\tau}=\left(\begin{array}{cc}
\tau & 4 \partial_{\bar{z}}^{2} \\
4 \partial_{z}^{2} & -\tau
\end{array}\right)
$$

endowed with an external non-Hermitian potential $V=\left(V_{i j}\right)$.

We recall:

$$
\partial_{\bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}\right), \quad \partial_{z}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right)
$$

are the usual Wirtinger derivatives.
2.2 Bound for complex eigenvalues: 1D Dirac

Theorem (J-C.Cuenin, A.Laptev, C.Tretter)

Consider the operator $H=H_{0}+V$ is defined on $L^{2}(\mathbb{R}) \otimes \mathbb{C}^{2}$ where:

$$
\begin{aligned}
& H_{0}=-i \frac{d}{d x} \sigma_{1}+m c^{2} \sigma_{3}, \quad \sigma_{1}:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& V=\left(V_{i j}\right)^{2} \text { with } V_{i j} \in L^{1}(\mathbb{R}) \text { for } i, j=1,2 \text { s.t. } \\
& \|V\|_{1}=\int_{\mathbb{R}}|V(x)| d x=\int_{\mathbb{R}}\left(\sum_{i, j=1 \ldots, 2}\left|V_{i j}(x)\right|^{2}\right)^{1 / 2} d x<1
\end{aligned}
$$

Then every non-embedded eigenvalue $z \in \mathbb{C} \backslash \sigma\left(H_{0}\right)$ of H lies in a region \mathcal{R} which is the disjoint union of two disks

$$
z \in \mathcal{R}:=D\left(m x_{0},\left|m r_{0}\right|\right) \cup D\left(-m x_{0},\left|m r_{0}\right|\right)
$$

2.2 Bound for complex eigenvalues: 1D Dirac

Figure 1. The two disks of Theorem 2.1 for three different values of $\|V\|_{1} \in(0,1)$ and $m=1$.

$$
x_{0}:=\sqrt{\frac{\|V\|_{1}^{4}-2\|V\|_{1}^{2}+2}{4\left(1-\|V\|_{1}^{2}\right)}+\frac{1}{2}} \quad r_{0}:=\sqrt{\frac{\|V\|_{1}^{4}-2\|V\|_{1}^{2}+2}{4\left(1-\|V\|_{1}^{2}\right)}-\frac{1}{2}}
$$

2.2 Bound for complex eigenvalues: 1D Dirac

Figure 1. The two disks of Theorem 2.1 for three different values of $\|V\|_{1} \in(0,1)$ and $m=1$.

$$
x_{0}:=\sqrt{\frac{\|V\|_{1}^{4}-2\|V\|_{1}^{2}+2}{4\left(1-\|V\|_{1}^{2}\right)}+\frac{1}{2}} \quad r_{0}:=\sqrt{\frac{\|V\|_{1}^{4}-2\|V\|_{1}^{2}+2}{4\left(1-\|V\|_{1}^{2}\right)}-\frac{1}{2}}
$$

Question:

Is it possible to determine a similar kind of bound for the bilayer case?
2.3 Bound for complex eigenvalues: 2D Bilayer

Theorem
Let $k \notin \sigma\left(D_{\tau}\right)$ be a complex eigenvalue of the operator $D=D_{\tau}+V$ and consider $1<p<4 / 3$. Then:

$$
C \frac{\omega(k, \tau)^{p}}{|\mu|^{p-1}} \int_{\mathbb{R}^{2}}|V(x)|^{p} d x \geq 1
$$

where C is independent from V and k, and where we set:

$$
\mu^{2}=k^{2}-\tau^{2}, \quad \omega(k, \tau)=\left(\sqrt{\left|\frac{k-\tau}{k+\tau}\right|}+\sqrt{\left|\frac{k+\tau}{k-\tau}\right|}+1\right) .
$$

In particular if $\tau=0$, then:

$$
|k|^{p-1} \leq C \int_{\mathbb{R}^{2}}|V(x)|^{p} d x
$$

2.4 Bound for complex eigenvalues: 2D Bilayer

Theorem

Let $k \notin \sigma\left(D_{\tau}\right)$ be a complex eigenvalue of the operator $D=D_{\tau}+V$ and consider $1<p<4 / 3$.
Then:

$$
\begin{aligned}
C\left(| \operatorname { l n } | \mu \left|\left|\sup _{x \in \mathbb{R}^{2}} \int_{|x-y|<(2|\mu|)^{-1}}\right|\right.\right. & |V(y)| d y+ \\
\sup _{x \in \mathbb{R}^{2}} \int_{\mathbb{R}^{2}}(1+\mid & \ln |x-y| \mid)|V(y)| d y+ \\
& \left.+\omega(k, \tau) \int_{\mathbb{R}^{2}}|V(x)| d x\right) \geq 1
\end{aligned}
$$

If $\tau=0$ then for small potential:

2.4 Bound for complex eigenvalues: 2D Bilayer

Theorem

Let $k \notin \sigma\left(D_{\tau}\right)$ be a complex eigenvalue of the operator $D=D_{\tau}+V$ and consider $1<p<4 / 3$.
Then:

$$
\begin{aligned}
& C\left(|\ln | \mu\left|\left|\sup _{x \in \mathbb{R}^{2}} \int_{|x-y|<(2|\mu|)^{-1}}\right| V(y)\right| d y+\right. \\
& \sup _{x \in \mathbb{R}^{2}} \int_{\mathbb{R}^{2}}(1+|\ln | x-y| |)|V(y)| d y+ \\
&\left.\quad+\omega(k, \tau) \int_{\mathbb{R}^{2}}|V(x)| d x\right) \geq 1 .
\end{aligned}
$$

If $\tau=0$ then for small potential:

$$
r \approx \exp \left(-\frac{C}{\int|V| d x}\right) \quad \text { as } \quad \int|V| d x \rightarrow 0
$$

2.5 Bound for complex eigenvalues: 2D Bilayer

Theorem
Let $k \notin \sigma\left(D_{\tau}\right)$ be an eigenvalue of the operator $D=D_{\tau}+V$ with $V=i W^{2}$ such that $W_{i, j} \geq 0$. Then $\operatorname{Re}(k)>0$ and it holds:

$$
\begin{equation*}
\left(C\left(\left|\frac{k+\tau}{k-\tau}-1\right|+\left|\frac{k-\tau}{k-\tau}-1\right|\right)+1\right) \frac{\pi}{4} \int_{\mathbb{R}^{2}} \operatorname{tr}|V| d x \geq 1 \tag{1}
\end{equation*}
$$

where the constant C is independent of V and k.

2.5 Bound for complex eigenvalues: 2D Bilayer

Theorem
Let $k \notin \sigma\left(D_{\tau}\right)$ be an eigenvalue of the operator $D=D_{\tau}+V$ with $V=i W^{2}$ such that $W_{i, j} \geq 0$. Then $\operatorname{Re}(k)>0$ and it holds:

$$
\begin{equation*}
\left(C\left(\left|\frac{k+\tau}{k-\tau}-1\right|+\left|\frac{k-\tau}{k-\tau}-1\right|\right)+1\right) \frac{\pi}{4} \int_{\mathbb{R}^{2}} \operatorname{tr}|V| d x \geq 1 \tag{1}
\end{equation*}
$$

where the constant C is independent of V and k.
If $\tau=0$ and

$$
\begin{equation*}
\frac{\pi}{4} \int_{\mathbb{R}^{2}} \operatorname{tr}|V| d x<1 \tag{2}
\end{equation*}
$$

then the operator $D=D_{0}+V$ does not have eigenvalues outside of the real line \mathbb{R}, i.e. the spectrum of D is real.

First theorem proof sketch:

Consider the polar decomposition $V=U|V|$ for the potential:

$$
V=B A=\left(U|V|^{1 / 2}\right)|V|^{1 / 2}
$$

The proof is based on the Birman-Schwinger's principle:

where $Q(k)$ is a bounded Hilbert-Schmidt operator.
So it follows that if $k \in \rho\left(\begin{array}{l}\text { (H) }\end{array}\right.$

- if k is an eigenvalue of H then $\|Q(k)\| \geq 1$.

First theorem proof sketch:

Consider the polar decomposition $V=U|V|$ for the potential:

$$
V=B A=\left(U|V|^{1 / 2}\right)|V|^{1 / 2}
$$

The proof is based on the Birman-Schwinger's principle:

- k is an eigenvalue of H if and only if -1 is an eigenvalue of:

$$
Q(k):=A\left(D_{\tau}-k\right)^{-1} B: \mathcal{H} \rightarrow \mathcal{H}, \quad k \in \rho\left(D_{m}\right) .
$$

where $Q(k)$ is a bounded Hilbert-Schmidt operator.
So it follows that if $k \in \rho\left(H_{0}\right)$:

- if k is an eigenvalue of H then $\|Q(k)\| \geq 1$.

First theorem proof sketch:

We use the following factorization:

$$
\left(D_{\tau}-k\right)^{-1}=\left(\tau \sigma_{3}+k-\mu\right)\left(\Delta^{2}-\mu^{2}\right)^{-1}+\left(D_{0}+\mu\right)\left(\Delta^{2}-\mu^{2}\right)^{-1}
$$ where $\mu^{2}=k^{2}-\tau^{2}$.

The resolvent kernel of the bi-harmonic operator $\left(\Delta^{2}-\mu^{2}\right)^{-1}$ is explicit:

$$
g_{\mu}(x, y)=\frac{i}{8 \mu}\left(H_{0}^{(1)}(\sqrt{\mu}|x-y|)-H_{0}^{(1)}(i \sqrt{\mu}|x-y|)\right) .
$$

So that the kernel of $\left(D_{0}-k\right)^{-1}$ reads as:

$$
\rho_{\mu}(|x-y|)=\left(\begin{array}{cc}
\mu g_{\mu}(x, y) & \partial_{\bar{z}}^{2} g_{\mu}(x, y) \\
\partial_{z}^{2} g_{\mu}(x, y) & \mu g_{\mu}(x, y)
\end{array}\right)
$$

First theorem proof sketch:

Let's consider $\mu=e^{i \theta}$

$$
\begin{array}{ll}
\left|g_{\theta}(r)\right| \approx r^{2}|\log (r)| & r \leq 1 / 2 \\
\left|g_{\theta}(r)\right| \approx 1 / \sqrt{r} & r>1 / 2
\end{array}
$$

...so that the constraint $1<p<4 / 3$ appears

$$
\left\|A\left(D_{0}-k\right)^{-1} B\right\|^{p} \leq C \frac{1}{|\mu|^{p-1}} \int_{\mathbb{R}^{2}}|V(x)|^{p} d x, \quad \mu^{2}=k^{2}-m^{2}
$$

First theorem proof sketch:

Let's consider $\mu=e^{i \theta}$

$$
\begin{array}{lr}
\left|g_{\theta}(r)\right| \approx r^{2}|\log (r)| & r \leq 1 / 2 \\
\left|g_{\theta}(r)\right| \approx 1 / \sqrt{r} & r>1 / 2
\end{array}
$$

...so that the constraint $1<p<4 / 3$ appears

$$
\begin{aligned}
& \left\|A\left(D_{0}-k\right)^{-1} B\right\|^{p} \leq C \frac{1}{|\mu|^{p-1}} \int_{\mathbb{R}^{2}}|V(x)|^{p} d x, \quad \mu^{2}=k^{2}-m^{2} \\
& \left\|A\left(D_{0}+k\right)\left(\Delta^{2}-\mu^{2}\right)^{-1} B\right\|^{p} \leq C \frac{(\omega(k, m)-1)^{p}}{|\mu|^{p-1}} \int_{\mathbb{R}^{2}}|V(x)|^{p} d x
\end{aligned}
$$

where C is actually dependent on an integral estimate for the kernel $\rho_{\mu}(|x-y|)$ but independent from k and V.

* We can extend the result to all real $p>1$, introducing the hypothesis of k lying in a sector of the complex plane which doesn't contain the real positive axis.
* It's reasonable to expect an improvement in the kernel decay at zero:

$$
\left|g_{\theta}(r)\right| \approx r^{2+\epsilon}|\log (r)| \quad r \leq 1 / 2
$$

* The operator on bounded domains requires different boundary conditions depending on the different cut operated to the lattice.
Ref.[Freitas, Seigl(2012)]

Thank you!

Figure: Image obtained with KWANT python package.

Two different type of potential:
S Static: Due to imperfections of graphene.
D Dynamic: Due to the presence of an oscillating in time potential, for example induced by water molecules.

Our meaningful property will be the Transmission. In order to define it we consider the system in a general electronic state before and after the scattering:

$$
\Psi_{O U T}=\mathcal{S} \cdot \Psi_{I N}
$$

where $\Psi_{\text {IN/OUT }}$ are the open channel and

$$
S=\left(\begin{array}{ll}
r & t^{\prime} \\
t & r^{\prime}
\end{array}\right) \quad \text { Scattering matrix }
$$

The Transmission is defined by:

Our meaningful property will be the Transmission. In order to define it we consider the system in a general electronic state before and after the scattering:

$$
\Psi_{O U T}=\mathcal{S} \cdot \Psi_{I N}
$$

where $\Psi_{\text {IN/OUT }}$ are the open channel and

$$
S=\left(\begin{array}{cc}
r & t^{\prime} \\
t & r^{\prime}
\end{array}\right) \quad \text { Scattering matrix }
$$

The Transmission is defined by:

$$
T=\sum_{i, j}^{N_{c}} t_{i j} t_{i j}^{\dagger}=\operatorname{Tr} t t^{\dagger} \quad \text { Transmission }
$$

Lorentzian distribution:

$$
\mathcal{L}\left(\alpha_{r}, \beta_{r}\right)(x)=\frac{1}{\pi \beta_{r}\left(1+\left(\frac{x-\alpha_{r}}{\beta_{r}}\right)^{2}\right)}
$$

S Roughness: $\beta_{r}=0.13, \alpha_{r}=0.05$
D Water: $\beta_{w}=0.0625, \alpha_{w}=0.025$

Lorentzian distribution:

$$
\mathcal{L}\left(\alpha_{r}, \beta_{r}\right)(x)=\frac{1}{\pi \beta_{r}\left(1+\left(\frac{x-\alpha_{r}}{\beta_{r}}\right)^{2}\right)}
$$

S Roughness: $\beta_{r}=0.13, \alpha_{r}=0.05$
D Water: $\beta_{w}=0.0625, \alpha_{w}=0.025$

Energy on each site:

$$
E_{j}(t)=\mathcal{L}\left(\frac{\alpha_{j}}{2}, \beta_{w}\right)(t)
$$

which is depending on time t.

3.Oscillating random potential

3.Oscillating random potential

Why Lorentzian?
Are the time average of all the transmissions and the transmission of an average state comparable?

$$
\left\langle\operatorname{Transmission}\left(\Psi_{t}\right)\right\rangle \stackrel{?}{=} \quad \operatorname{Transmission}\left(\left\langle\Psi_{t}\right\rangle\right)
$$

Why Lorentzian?
Are the time average of all the transmissions and the transmission of an average state comparable?

$$
\left\langle\operatorname{Transmission}\left(\Psi_{t}\right)\right\rangle \stackrel{?}{=} \quad \operatorname{Transmission}\left(\left\langle\Psi_{t}\right\rangle\right)
$$

What is the average state $\left\langle\Psi_{t}\right\rangle$? It is a Lorentzian distribution! If we consider a complex potential s.t.

$$
E_{j}=\frac{\alpha_{j}}{2}+i \beta_{w}
$$

then

$$
\begin{aligned}
\operatorname{DOS}\left(E_{j}\right) & =\lim _{\epsilon \rightarrow 0}\left[\operatorname{Im} \frac{1}{E_{j}-\left(\frac{\alpha_{j}}{2}+i \beta_{w}\right)+i \epsilon}\left(\frac{E_{j}+\left(\frac{\alpha_{j}}{2}+i \beta_{w}\right)+i \epsilon}{E_{j}+\left(\frac{\alpha_{j}}{2}+i \beta_{w}\right)+i \epsilon}\right)\right] \\
& =\frac{1}{\pi \beta_{w}^{2}} \frac{\beta_{w}}{\left(E_{j}-\frac{\alpha_{j}}{2}\right)^{2}+\beta_{w}^{2}}=\mathcal{L}\left(\frac{\alpha_{i}}{2}, \beta_{w}\right)\left(E_{j}\right)
\end{aligned}
$$

- Good qualitative response!
- Unfortunately there's a quantitative gap.

