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Abstract

[Part A] We study the infimum of the Ginzburg-Landau
functional in a two dimensional simply connected domain and
with an external magnetic field allowed to vanish along a
smooth curve. We obtain an energy asymptotics which is valid
when the Ginzburg-Landau parameter is large and the strength
of the external field is below the third critical field. We also
discuss the localization of the minimizers. Compared with the
known results when the external magnetic field does not
vanish, we show in this regime a concentration of the energy
near the zero set of the external magnetic field. The main
results have been obtained by X.B. Pan–K.H. Kwek,
Fournais-Helffer, K. Attar, B.Helffer-A.Kashmar.
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Introduction

The Ginzburg-Landau functional is a model describing the response
of a superconducting material to an applied magnetic field through
the qualitative behavior of the minimizing/critical configurations.
The mathematically rigorous analysis of such configurations led to
a vast literature and to many mathematically challenging
questions, with the aim to recover what physicists have already
observed through experiments or heuristic computations. See the
book by De Gennes for an introduction to the physics of
superconductivity, and the two monographs (Fournais-Helffer,
Sandier-Serfaty for the mathematical progress on this subject).
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Much of the mathematical literature concerns samples in the form
of a long cylinder or a thin film subject to a constant magnetic
field. The direction of the magnetic field is parallel to the
cylinder’s axis (for cylindrical samples) or perpendicular to the
plane of the thin film (for thin film samples). For such samples, we
have the following behavior:

I For large values of the intensity of the magnetic field, the
magnetic field penetrates the sample which is in a normal
(non-superconducting) state.

I Decreasing the intensity of the magnetic field gradually past a
critical value Hc3 , superconductivity nucleates along the
boundary of the sample; the bulk of the sample remains in a
normal state ; this is the phenomenon of surface
superconductivity (see Saint-James—De Gennes).

I Decreasing the field further, superconductivity is restored in
the bulk of the sample; the magnetic field may penetrate the
sample along point defects called vortices; such vortices
indicate regions of the sample that remain in the normal state
(see Sandier-Serfaty).
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The Ginzburg-Landau functional.

Let us describe the mathematical problem. It is naturally posed for
domains in R3 , but for cylindrical domains in R3 , it is natural to
consider a functional defined in a domain Ω ⊂ R2 , where Ω is the
cross-section of the cylinder. This is why we consider models in
R2 . We assume Ω simply connected.
The Ginzburg-Landau functional is defined by

G(ψ,A) =

∫
Ω

(
|∇κHAψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

)
dx

+ (κH)2

∫
Ω
| curl A− β|2 dx . (1)

Here the function ψ is called the order parameter (or sometimes
the wave function) and A is a magnetic potential.
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For A = (A1,A2) , curl A = ∂xA2 − ∂yA1 and ∇κHA denotes the
magnetic gradient: ∇+ iκHA. The symbol β ∈ L2 is called the
external or applied magnetic field.
The parameter κ > 0 (the Ginzburg-Landau parameter) depends
on the material, and H > 0 measures the strength of the external
magnetic field. We consider the asymptotic regime κ→ +∞,
which corresponds to strong type II samples.
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We will sometime write G = Gκ,H , to mention the parameters
involved. The natural domain of the functional is
H1(Ω,C) × H1(Ω,R2) . However, due to the gauge invariance of
G, we can restrict the functional to the smaller set
H1(Ω,C)× H1

div(Ω) , where

H1
div(Ω) =

{
V ∈ H1(Ω,R)2

∣∣ div V = 0 in Ω , V · ν = 0 on ∂Ω
}
.

(2)
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We define the Ginzburg-Landau ground state energy to be the
infimum of the functional, i.e.

Emin(κ,H) := inf
(ψ,A)∈H1(Ω)×H1

div(Ω)
Gκ,H(ψ,A) . (3)

If F is the unique magnetic potential in H1
div(Ω) such that:

curl F = β ,

we observe that: Gκ,H(ψ ≡ 0,F) = 0 , which implies the inequality:

Emin(κ,H) ≤ 0 . (4)

The pair (0,F) is called normal state in Physics and we will, in
particular, study when we have equality or strict inequality in (4).
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Minimizers and Ginzburg-Landau equations

As Ω is bounded, the existence of a minimizer is rather standard.
A minimizer should satisfy the Euler-Lagrange equation, which is
called in this context the Ginzburg-Landau system and reads:

−∆κHAψ = κ2(1− |ψ|2)ψ ,

curl
(

curl A− β
)

= − 1
κHRe

(
iψ ∇κHAψ

)
,

}
in Ω ,

(5a)

ν · ∇κHAψ = 0 ,
curl A − β = 0 ,

}
on ∂Ω .

(5b)
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Here, −∆κHA is the magnetic Laplacian:

−∆κHA := (Dx+κHA1)2+(Dy+κHA2)2 , with Dx = −i∂x , Dy = −i∂y ,

and
curl 2A = (∂y ( curl A),−∂x( curl A)) .

The analysis of the system (5) can be performed by PDE
techniques. We note that this system is nonlinear, that H1(Ω) is,
when Ω is bounded and regular in R2 , compactly embedded in
Lp(Ω) for all p ∈ [1,+∞) .
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Actually, the nonlinearity is weak in the sense that the principal
part is a linear elliptic system. One can show in particular that the
solution in H1(Ω,C)× H1

div(Ω) of the elliptic system (5) is
actually, when Ω is regular, in C∞

(
Ω
)
.
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Basic properties for solutions of the Ginzburg-Landau
equations

The first important property which is a consequence of the
maximum principle is

Proposition

If (ψ,A) ∈ H1(Ω)× H1(Ω,R2) is a (weak) solution to (5), then

‖ψ‖L∞(Ω) ≤ 1 . (6)

Using this Proposition, we can get various a priori estimates on
solutions to the Ginzburg-Landau equations (5), which play an
important role in the whole theory.
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Proposition: a priori estimates on the critical points

Let Ω ⊂ R2 be bounded and smooth, and let β ∈ L2(Ω) be given.
Then for all p ≥ 2 , there exists C = C (p) > 0 such that for all
solutions (ψ,A) ∈ H1(Ω)× H1

div(Ω) to (5), we have

‖∇2
κHAψ‖p ≤ κ2‖ψ‖p , (7)

‖∇κHAψ‖2 ≤ κ‖ψ‖2 , (8)

‖ curl A− β‖W 1,p(Ω) ≤
C

κH
‖ψ‖∞ ‖∇κHAψ‖p . (9)

It is also useful to have Hölder estimates.
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The Giorgi-Phillips Theorem for minimizers

We observe that (0,F) is a trivial critical point of the functional G ,
i.e., a trivial solution of the Ginzburg-Landau system (5). The pair
(0,F) is often called the normal state or normal solution. It is
natural to discuss—as a function of H—whether this pair is a local
or global minimizer. When H is large, one will show that this
solution is effectively the unique global minimizer. One says that in
this case the superconductivity is destroyed. In other words, the
order parameter is identically zero in Ω . Let us give a rather
simple proof of this result that roughly says that (0,F) is the
unique minimizer of the functional when the strength of the
exterior magnetic field is sufficiently large. We actually show a
stronger result for all the solutions of the associated
Ginzburg-Landau system.
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So we assume that we have a nonnormal stationary point (ψ,A)
for G , that is a solution (ψ,A) ∈ H1(Ω)×H1

div(Ω) of (5) satisfying∫
Ω
|ψ(x)|2 dx > 0 . (10)

By (8), (9), and (6), and using a standard inequality on the
curl − div system for controlling ‖A− F‖2 in Ω by
‖ curl A− β‖2 , we get

‖∇κHAψ‖2
2 + (κH)2‖A− F‖2

2 ≤ CΩκ
2‖ψ‖2

2 . (11)
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Writing A = A− F + F and implementing (6) and (11) give∫
Ω
|(∇+ iκHF)ψ|2 dx ≤ 2CΩκ

2

∫
Ω
|ψ(x)|2 dx . (12)

Since ψ satisfies (10), we obtain

λN1 (HκF) ≤ 2CΩκ
2 , (13)

where λN1 (HκF) denotes the ground state energy of the Neumann
realization of −∆HκF in Ω.
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We observe that λN1 (HκF) > 0 . So by combining an analysis in
the small B regime (perturbation theory) and for large B, and the
continuity of B 7→ λN1 (BF), we get the existence of C0 > 0 s.t.

λN1 (HκF) ≥ 1

C0
min(Hκ, (Hκ)2) . (14)

Thus, we find that if a nontrivial stationary point (ψ,A) exists,
then

H ≤ C (1 + κ) .

Bernard Helffer (Univ. Nantes, CNRS and Univ Paris-Sud) Ginzburg-Landau with variable exterior magnetic fields



We have obtained:

Giorgi-PhillipsTheorem

Let Ω ⊂ R2 be smooth, bounded, and simply connected, and let β
in (5) be continuous and satisfy

β(x) > 0 , ∀x ∈ Ω̄ .

Then there exists C such that if

H ≥ C max{κ, 1} ,

then the pair (0,F) is the unique solution to (5) in
H1(Ω)× H1

div(Ω) .
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We have used in the proof:

Lu-Pan Theorem

λN1 (BF ) = B min(b,Θ0b
′) + o(B) ,

where Θ0 ∈ (0, 1), b = infx∈Ω β(x) and b′ = infx∈∂Ω β(x).

Two models are indeed involved in the proof by localization: the
model with constant magnetic fields

(Dx −
B

2
β(xj , yj)y)2 + (Dy +

B

2
β(xj , yj)x)2 ,

in R2 and the Neumann realization of the same operator in R2
+.

The bottom of the spectrum of the first one is B|β(xj , yj)| and the
bottom of the spectrum of the second one is Θ0B|β(xj , yj)|.
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Remark

In this form this theorem is due to Lu-Pan (1999). Many
improvements concerning the control the remainder term o(B)
have been obtained. See the book of Fournais-Helffer (2010) and
references therein and for more recent references Raymond,
Raymond-Vu-Ngoc (2014), Helffer-Kordyukov (2014) and a recent
book by N. Raymond (2016).
Remark
The Giorgi-Phillips statement is the starting point of the analysis
of the third critical field corresponding to the transition between
normal minimizers and non-normal minimizers. We refer to the
books of Fournais-Helffer (2010) and Sandier-Serfaty (2007) for a
detailed analysis of the behavior of these critical fields and
references therein.
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Vanishing exterior fields

We begin to discuss the case when β vanishes in Ω but

|β(x)|+ |∇β(x)| > 0 . (15)

More precisely, introducing

Γ = β−1(0) ,

one has the theorem:
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Pan-Kwek Theorem

lim
B→+∞

λN1 (BA)

B
2
3

= [α1(β)]
2
3 , (16)

where

α1(β) = min

{
1

2
λ

3
2
0 inf

x∈Ω∩Γ
|∇β(x)| , inf

x∈∂Ω∩Γ
ζ(ϑ(x))

3
2 |∇β(x)|

}
,

(17)
where λ0 is the lowest eigenvalue of the Montgomery operator (to

be defined later) and ϑ(x) denotes the angle between curl β and
the tangent vector of ∂Ω at x and ζ(ϑ) denotes the lowest
eigenvalue of the Neumann realization of −∆Aϑ in R2

+ with

Aϑ = − |x|
2

2 (cosϑ, sinϑ) .

Bernard Helffer (Univ. Nantes, CNRS and Univ Paris-Sud) Ginzburg-Landau with variable exterior magnetic fields



As a consequence, we can extend the Giorgi-Phillips theorem to
this case.

GP-Theorem with vanishing magnetic field

Let Ω ⊂ R2 be smooth, bounded, and simply connected, and let β
be in C∞(Ω) and satisfying (15). Then there exists C s.t. if

H ≥ C max{κ2, 1} ,

then the pair (0,F) is the unique solution to (5) in
H1(Ω)× H1

div(Ω) .

Notice that a more precise statement is given in Pan-Kwek in the
limit κ large (see also the talk of J.P. Miqueu).
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Minimal Energy asymptotics
Samples submitted to variable magnetic fields are considered in the
physical literature. See for example the talk of J.P. Solovej. The
reduction from the N-body problem to the Ginzburg-Landau
functional does not lead to a constant applied magnetic field.
For the sake of illustrating the results, let us consider a thin film
sample placed horizontally (see Figure 1).

Figure: sample subject to a variable magnetic field that vanishes along
the curve Γ
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The region occupied by the sample is decomposed into Ω1 and Ω2

separated by a smooth curve Γ. We suppose that β vanish along
the smooth curve Γ. We have the following picture:

I For very large values of the intensity of the magnetic field, the
sample is in a normal state (Giorgi-Phillips, Pan-Kwek) .

I Decreasing the intensity of the magnetic field gradually past a
critical value Hc3 , superconductivity nucleates along Γ; the
rest of the sample remains in a normal state ; this is in
contrast of the phenomenon of surface superconductivity
observed for samples subject to a constant magnetic field .

Bernard Helffer (Univ. Nantes, CNRS and Univ Paris-Sud) Ginzburg-Landau with variable exterior magnetic fields



When H � κ2, then Giorgi-Phlillips like theorem says that the
energy is the energy of the normal state, i.e. 0.
When decreasing H, various regimes appear depending on the
comparison between H and (a power of) κ.
There are two regimes describing the concentration of the
superconductivity along Γ.
In a first regime (high H below Hc3(κ)) , the distribution of the
superconductivity is displayed via a limiting function E (·); this
limiting function is defined via a simplified Ginzburg-Landau type
functional with a magnetic field vanishing along a line.
In another regime (lower H above Hc1(κ)) , the distribution of the
superconductivity is displayed via a known limiting function g(·) ,
which is defined via a simplified Ginzburg-Landau type functional
with a constant magnetic field; the function g(·) displays the
distribution of (bulk) superconductivity for samples submitted to a
constant magnetic field (Sandier-Serfaty (2002),
Fournais-Kashmar).
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We recall that the Ginzburg-Landau functional is defined for
(ψ,A) ∈ H1(Ω;C)× H1(Ω;R2) by,

G(ψ,A) =

∫
Ω
eκ,H(ψ,A) dx (18)

where

eκ,H(ψ,A) := |(∇−iκHA)ψ|2−κ2|ψ|2+
κ2

2
|ψ|4+(κH)2| curl A−β|2 .
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We also assume that:

Γ ∩ ∂Ω is a finite set . (19)

The assumptions on β and Γ (if non empty) force the function β
to change sign. In physical terms, the set Γ splits the domain Ω
into two parts Ω1 = {β(x) > 0} and Ω2 = {β(x) < 0} such that
the magnetic field applied on Ω1 is along the opposite direction of
the magnetic field applied on Ω2.
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The ground state energy of the functional is,

Emin = inf{G(ψ,A) : (ψ,A) ∈ H1(Ω;C)× H1(Ω;R2)} . (20)

We are interested in the asymptotics of the energy for κ large. The
PHD thesis of K. Attar (2012-2014) is devoted to the case when
H ≈ κ.
Helffer-Kachmar (2014) consider the regime where H satisfies

H = ςκ2 , ς ∈ (0,∞) , (21)

with ς being a function of κ satisfying ς � κ−1. This regime only
appears when Γ is non empty.
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Attar’s results

They have been obtained recently by Attar in [3, 4]. The
assumption on the strength of the magnetic field was H ≤ Cκ . In
the regime of large κ, K. Attar has obtained in [3, 4] parallel
results to those known for the constant magnetic field in
Sandier-Serfaty [33].
However, it is proved in [3] that if

H = bκ , (22)

and b is a constant, then when b is large enough, the energy and
the superconducting density are concentrated near Γ with a length
scale 1

b .
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Essentially, that is a consequence of the following theorem.

Theorem on the asymptotics of the energy

As κ→ +∞, we have the following asymptotics

Emin = κ2

∫
Ω
g

(
H

κ
|β(x)|

)
dx + o

(
κH
∣∣∣ln κ

H

∣∣∣+ 1
)
, (23)

which is valid under the relaxed assumption that

Λ1κ
1/3 ≤ H ≤ Λ2κ , (24)

Λ1 and Λ2 being positive constants.
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Remarks

1. When β > 0 is constant, we have

Emin = κ2 |Ω| g
(
H

κ
β

)
+ o

(
κH
∣∣∣ln κ

H

∣∣∣+ 1
)
. (25)

This is only good if H < κβ. This formula does not ”see” the
surface superconductivity ! For this we need another formula
which was conjectured by Pan [29], Almog-Helffer [2],
Fournais-Helffer, Fournais-Helffer-Persson [13], the final
statement being achieved by Correggi-Rougerie in [6, 7].

2. The lower bound is unsatisfactory and probably partially
technical. Can we replace the lower bound by Hc1(κ),
assuming that it has been defined properly).

3. The upperbound is satisfactory if β does not vanish (with
Giorgi-Philipps statement in mind) and not satisfactory in the
case when Γ is not empty.
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Details on Pan’s conjecture and its solution by
Correggi-Rougerie

β = 1.

Theorem (see Pan [29])

For any b ∈
]
1,Θ−1

0

[
, there exists a constant Eb, such that, for

H = κb, as κ→ +∞,

inf
(ψ,A)∈W 1,2(Ω)×W 1,2(Ω;R2)

Eκ,H [ψ,A] = −
√
κHEb|∂Ω|+ o(κ). (26)

Pan’s conjecture gives the value for Eb in relation with the family
of 1D-functionals

Fz,λ(φ) :=

∫ +∞

0
|φ′(t)|2 + (t − z)2|φ(t)|2 +

λ

2
|φ(t)|4 − λ|φ(t)|2 dt .

(27)

For λ = b−1, we have to minimize over z the infimum of the
functional over φ.
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The function g hereafter called the bulk energy, appears in the
analysis of the two and three dimensional Ginzburg-Landau
functional with constant magnetic field Sandier-Serfaty (2002)
[33], Fournais-Kachmar [14]. It is associated with some effective
model energy. The function g will play a central role and its
definition will be recalled later.
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The bulk energy function

It is related to the periodic solutions of (5) and the Abrikosov
energy (cf. Aftalion-Serfaty [1], Fournais-Kachmar [15]).
For b ∈ (0,+∞), r > 0 , and Qr = (−r/2, r/2) × (−r/2, r/2) ,
we define the functional, for u ∈ H1(Qr ),

Fb,Qr (u) =

∫
Qr

(
b|(∇− iA0)u|2 − |u|2 +

1

2
|u|4
)

dx . (28)

Here, A0 is the magnetic potential,

A0(x) =
1

2
(−x2, x1) , for x = (x1, x2) ∈ R2 . (29)
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We define the Dirichlet, Periodic, and Neumann ground state
energies by

eD(b, r) = inf{Fb,Qr (u) : u ∈ H1
0 (Qr )} , (30)

eP(b, r) = inf{Fb,Qr (u) : u ∈ H1
per (Qr )} , (31)

eN(b, r) = inf{Fb,Qr (u) : u ∈ H1(Qr )} . (32)
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We can define g(·) as follows (cf. Sandier-Serfaty (2002) [33],
Fournais-Kachmar [14], Attar (2013) [3])

∀ b > 0 , g(b) = lim
r→∞

eD(b, r)

|Qr |
= lim

r→∞

eN(b, r)

|Qr |
, (33)

where |Qr | = r2 denotes the area of Qr .
Moreover g(·) is a non decreasing continuous function s.t.

g(0) = −1

2
, g(b) < 0 when b < 1 , and g(b) = 0 when b ≥ 1 .

(34)
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One purpose is now to give a precise description of the
aforementioned concentration of the order parameter and the
energy when ς � 1, thereby leading to the assumption in (21).
The leading order term of the ground state energy in (20) is
expressed in some regime via the new quantity (instead of g(·))
E (·). The function (0,∞) 3 L 7→ E (L) is a continuous function
satisfying the following properties:

I E (L) is defined via a reduced Ginzburg-Landau energy in the
strip (this energy is introduced in (75)).

I E (L) = 0 iff L ≥ λ−3/2
0 , where λ0 is a universal constant

defined as the bottom of the spectrum of a Montgomery
operator.

I As L→ 0+, the expected asymptotic behavior of E (L) is like
L−4/3 .

If time permits, this will be discussed more deeply at the end of
this part.
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The main result is:

Theorem (Helffer-Kachmar)

Suppose that β satisfies previous assumptions. Let b : R+ → R+

be a function satisfying

lim
κ→∞

b(κ) = +∞ and lim sup
κ→∞

κ−1b(κ) < +∞ . (35)

Suppose that
H = b(κ)κ .
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Theorem continued

Then, as κ→ +∞, the ground state energy in (20) satisfies:

1. If b(κ)� κ1/2, then

Emin = κ
(∫

Γ

(
|∇β(x)| H

κ2

)1/3
E
(
|∇β(x)| H

κ2

)
ds(x)

)
+o
(
κ3

H

)
.

(36)

2. If b(κ) . κ1/2, then

Emin = κ2

∫
Ω
g

(
H

κ
|β(x)|

)
dx + o

(
κ3

H

)
. (37)

Case (2) (except the expression of the remainder) coincides with
Attar’s result.
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First comment

We have seen that if H is larger than a critical value Hc3(κ) , then
the minimizers of the functional in (18) are trivial and the ground
state energy is Emin = 0 . Furthermore, the value of Hc3(κ) as given
in Pan-Kwek [28] admits, as κ→∞ , the following asymptotics

Hc3(κ) ∼ c0κ
2 , (38)

where c0 is an explicit constant). As such, the assumption on the
magnetic field in HK-Theorem is significant when
b(κ)κ ≤ H ≤ Mκ2 and M ∈ (0, c0] is a constant. Note also that
this theorem gives a bridge between the situations studied by Attar
in [3, 4] and Pan-Kwek in [28].
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Remark: (The remainder terms in HK-Theorem

As long as the intensity of the external magnetic field satisfies
κ� H ≤ Mκ2 and M ∈ (0, c0), the remainder term appearing in
HK-Theorem is of lower order compared with the principal term.
g(b) is bounded and vanishes when b ≥ 1. Accordingly,

κ2

∫
Ω
g

(
H

κ
|β(x)|

)
dx =

∫
{|β(x)|< κ

H
}
g

(
H

κ
|β(x)|

)
dx ≈ κ3

H
.

One can see that,

κ

∫
Γ

(
|∇β(x)| H

κ2

)1/3

E

(
|∇β(x)| H

κ2

)
≈ κ3

H
.

Hence they are of the same order
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Remark (The two regimes in HK-Theorem)

HK-Theorem displays two regimes governing the behavior of the
ground state energy. There is a small gap between the two regimes
considered. Hence it is interesting to show that the two
asymptotics match in this intermediate zone.
Hence it is interesting to inspect whether there exists a relationship
between the limiting functions E (·) and g(·).
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An asymptotic link between E and g

Helffer-Kachmar (2014) obtain the following relationship between
the functions E (·) and g(·):

Matching Theorem

It holds,

E (L) = 2L−4/3

∫ 1

0
g(b) db + o

(
L−4/3

)
as L→ 0+ .
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Along the proof of HK-Theorem, we obtain:

Local HK-Theorem

Suppose β satisfies the previous assumptions. Let b : R+ → R+ be
satisfying (35). Suppose H = b(κ)κ and that (ψ,A) is a minimizer
of the functional in (18). Then, as κ→∞ , it holds:
Estimate of the magnetic energy.

κ2H2

∫
Ω
| curl A− β|2 dx =

κ3

H
o (1) .

So the induced magnetic field is close to the applied magnetic field.

Bernard Helffer (Univ. Nantes, CNRS and Univ Paris-Sud) Ginzburg-Landau with variable exterior magnetic fields



Estimate of the local energy in D.

1. If b(κ)� κ1/2, then

E0(ψ,A;D) :=

∫
D

(
|(∇− iκHA)ψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

)
dx

(39)

= κ

(∫
D∩Γ

(
|∇β(x)| H

κ2

)1/3

E

(
|∇β(x)| H

κ2

)
ds(x)

)
(40)

+
κ3

H
o (1) .

2. If 1� b(κ) . κ1/2, then

E0(ψ,A;D) = κ2
∫
D g

(
H
κ |β(x)|

)
dx

+κ3

H o (1) .
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Concentration of the order parameter in D

.

1. If b(κ)� κ1/2, then∫
D
|ψ(x)|4 dx = −2

κ

(∫
D∩Γ

(
|∇β(x)| H

κ2

)1/3

E

(
|∇β(x)| H

κ2

)
ds(x)

)
+
κ

H
o (1) .

2. If 1� b(κ) . κ1/2, then∫
D
|ψ(x)|4 dx = −

∫
D
g

(
H

κ
|β(x)|

)
dx +

κ

H
o (1) .

This gives a weak localization result for the order parameter ψ in a
neighborhood of Γ.
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In the two regimes displayed in the local HK-Theorem, the mean
term in the asymptotic expansions vanish when D ∩ Γ = ∅. It could
be interesting to improve the remainder terms, we will prove that
the L2-norm of ψ is concentrated near Γ, and that ψ exponentially
decays as κ→∞, away from Γ.
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Exponential decay outside the superconductivity region
We work under Attar-Assumptions (H is of the same order as κ).
We introduce ω(ε) := {x ∈ Ω̄ | |β(x)| > ε}.

Figure: sample subject to a variable magnetic field vanishing along the
curve Γ. Here β = B0
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Decay Theorem

Let β in C 0,α, β0 = maxx∈Ω̄ |β(x)| and β1 = maxx∈∂Ω |β(x)|.
If b > β−1

0 and K ⊂ ω
(

1
b

)
is an open set with K ⊂ ω

(
1
b

)
, there

exist κ0 > 0, C > 0 and α0 > 0 such that, if κ ≥ κ0 and (ψ,A)κ,H
is a solution of (5) for H = bκ , then

‖ψ‖H1(K) ≤ C e−α0κ . (41)

If b >
(
Θ0β1

)−1
, then the same holds when K satisfies

K ⊂ ω
(

1

b

)
∪
{
x ∈ ∂Ω, Θ0|β(x)| > 1

b

}
.

The proof is based on Agmon like decay estimates.
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Critical fields revisited

The identification of the critical magnetic fields is an important
question regarding the functional in (18). This question has an
early appearance in physics (see e.g. [17]) and was the subject of a
vast mathematical literature in the past two decades. The two
monographs [8, 32] contain an extensive review of many important
results. We give a brief informal description of critical fields and
highlight the importance of the case of a vanishing applied
magnetic field.
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Reminder: The constant field case

When β is a (non-zero) constant, three critical values are assigned
to the magnetic field H, namely Hc1 , Hc2 and Hc3 . The behavior of
minimizers (and critical points) of the functional in (18) changes
as the parameter H (i.e. magnetic field) crosses the values Hc1 ,
Hc2 and Hc3 . The identification of these critical values is not easy,
especially the value Hc2 which is still loosely defined.
Let us recall that a critical point (ψ,A) of the functional in (18) is
said to be normal if ψ = 0 everywhere. The critical field Hc3(κ) is
then defined as the value at which the transition from normal to
non-normal critical points takes place.
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The identification of the critical value Hc3(κ) is strongly related to
the spectral analysis of the magnetic Schrödinger operator with a
constant magnetic field and Neumann boundary condition.
Suppose that Ω ⊂ R2 is connected, open, F a vector field
satisfying curlF = β, with β is constant and positive, and λ(HκF )
the lowest eigenvalue of the magnetic Schrödinger operator

−∆κHF = −(∇− iκHF )2 in L2(Ω) , (42)

with Neumann boundary conditions. It has been proved that the
function t 7→ λN(tF ) is monotonic for large values of t, see [8] and
the references therein.
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The four fields are proved to be equal in [8]. the critical field Hc3 is
the unique solution of:

λN(Hc3(κ)κF ) = κ2 . (43)

In this case, it was shown by Lu-Pan [24] that,

λN(HκF ) ∼ (Hκ)βΘ0 , when Hκ� 1 . (44)

Further improvements of (44) are available, see [8] for the state of
the art in 2009 and references therein.
As a consequence of (43) and (44), we get for κ sufficiently large,

Hc3(κ) ∼ κ/(Θ0β) . (45)
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The second critical field Hc2(κ) is usually defined as follows

Hc2(κ) = κ/β . (46)

Notice that this definition of Hc2 is asymptotically matching with
the following definition1,

λD(Hc2(κ)κF ) = κ2 , (47)

where λD is the first eigenvalue of the operator in (42), but with
Dirichlet boundary condition.
Near Hc2(κ), a transition takes place between surface and bulk
superconductivity. At the level of the energy, this transition is
described in [15]. The bulk distribution of the superconductivity
near Hc2 is computed in [22].

1Assuming the monotonicity of t 7→ λD(tF ) for t large.
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We recall that Θ0 < 1 . Hence, as expected, Hc2(κ) < Hc3(κ) for κ
sufficiently large. For the identification of the critical field Hc1(κ),
we refer to Sandier-Serfaty [32]. A natural question is to extend
this discussion in the variable magnetic field case (i.e. β is
non-constant).
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The case of a non vanishing exterior magnetic field

Here we discuss the situation where β(x) 6= 0 everywhere in Ω . In
this case, we recall that it is proved by Lu-Pan [25, Theorem 1]
that,

λ(HκF ) ∼ (Hκ) min

(
inf
x∈Ω
|β(x)|,Θ0 inf

x∈∂Ω
|β(x)|

)
, (48)

as Hκ→∞ .
Basically, this leads to consider two cases as follows.
Surface superconductivity
First, we assume that

inf
x∈Ω
|β(x)| > Θ0 inf

x∈∂Ω
|β(x)| . (49)
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In this case, the phenomenon of surface superconductivity observed
in the constant magnetic field case is preserved. More precisely,
superconductivity starts to appear at the points where (β)/∂Ω is
minimal. The critical value Hc3(κ) is still defined by (43). If the
minima of (β)/∂Ω are non-degenerate, then the monotonicity of

the eigenvalue λN(t F ) for large values of t is established by
N. Raymond in [30, Section 6]. Consequently, we get when κ is
sufficiently large,

Hc3(κ) ∼ κ

Θ0 infx∈∂Ω |β(x)|
. (50)
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Tentatively, one could think to define Hc2(κ) either by

Hc2(κ) =
κ

infx∈Ω |β(x)|
, (51)

or by
λD(Hc2(κ)κF ) = κ2 , (52)

where λD is the first Dirichlet eigenvalue of the operator in (42).
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Both formulas agree with their analogues in the constant magnetic
field case (see (46) and (47)). Also, the values of Hc2(κ) given in
(51) or (52) asymptotically match as κ→∞ .
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In order that the definition of Hc2(κ) in (52) be consistent, one
should prove monotonicity of t 7→ λD(tF ) for large values of t.
This will ensure that (52) assigns a unique value of Hc2(κ).
However, such a monotonicity is not proved yet. The definition in
(51) was proposed in [8].
Interior onset of superconductivity Here we assume that

inf
x∈Ω
|β(x)| < Θ0 inf

x∈∂Ω
|β(x)| . (53)

In this case, the onset of superconductivity near the surface of the
domain disappears. If one decreases gradually the intensity of H
from +∞, then superconductivity will start to appear near the
minima of |β|, i.e. inside a compact subset of Ω.
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In this situation, we need not distinguish between the critical fields
Hc2(κ) and Hc3(κ), since surface superconductivity is absent here.
Consequently, we expect that,

Hc2(κ) = Hc3(κ) ∼ κ

infx∈Ω |β(x)|
. (54)

A partial justification of this fact can be done using the linearized
Ginzburg-Landau equation near a normal solution. Actually, we
may also define Hc3(κ) and Hc2(κ) as the values verifying (43) and
(47). It should be noticed here that the vector field F satisfies
curl F = β and β cannot be constant.
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Under Assumption (53), the known spectral asymptotics (which
are actually the same in this case) of the Dirichlet and Neumann
eigenvalues will lead us to the asymptotics given in the righthand
side of (54). Under the additional assumption that infx∈Ω |β(x)| is
attained at a unique minimum in Ω and that this minimum is non
degenerate, a complete asymptotics of λN(tF ) can be given (see
Helffer-Mohamed [21], Helffer-Kordyukov [19, 20], Raymond-Vu
Ngoc [31] ) and the monotonicity/strong diamagnetism property
holds for large values of t (see Chapter 3 in [8]). Hence the
definition of Hc3(κ) is clear in this case.
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Besides the aforementioned linearized calculations, the results of
[3] can be used to justify the equality of the critical fields Hc2(κ)
and Hc3(κ) as well as their definition in (54).
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Critical fields in the case of a vanishing exterior magnetic
field

We come back the case when β vanishes along a curve, first
considered in [28] and then in [3]. We assume that

|β|+ |∇β| 6= 0 in Ω . (55)

At each point of β−1(0) ∩ Ω, Pan-Kwek [28] introduce a reduced
model (a Montgomery operator parameterized by the intensity of
the magnetic field at this point) whose ground state energy,
denoted by λ0, captures the ‘local’ ground state energy of the
Schrödinger operator in (42).
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Similarly, at every point x of β−1(0) ∩ ∂Ω, a toy operator is
defined on R2

+ parameterized (up to unitary equivalence) by the
intensity of β(x) and the angle θ(x) ∈ [0, π/2) between the unit
normal of the boundary and ∇β(x). The ground state energy of
this toy operator is denoted by λ0(R+, θ(x)).
We recall that the leading order behavior of the ground state
energy of the operator in (42) is

λN(HκF ) ∼ (Hκ)2/3 α
2/3
1 , (56)

as Hκ→ +∞ .
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Here

α1 = min

(
λ

3/2
0 min

x∈Γblk

|∇β(x)| , min
x∈Γbnd

λ0(R+, θ(x))|∇β(x)|
)
,

(57)

Γblk = {x ∈ Ω : β(x) = 0} (58)

and
Γbnd = {x ∈ ∂Ω : β(x) = 0} . (59)
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The critical value Hc3(κ) could tentatively be defined as the
solution of the equation in (43). However, when β vanishes,
monotonicity of t 7→ λN(tF ) is not a direct application of Chapter
3 in [8] (see the discussion below). Nevertheless, for the various
definitions of Hc3(κ) proposed in [28], one always get that, for
large values of κ,

Hc3(κ) ∼ κ2

α1
. (60)

Bernard Helffer (Univ. Nantes, CNRS and Univ Paris-Sud) Ginzburg-Landau with variable exterior magnetic fields



Surface superconductivity (near Hc3) is absent if

λ
3/2
0 min

x∈Γblk

|∇β(x)| < min
x∈Γbnd

λ0(R+, θ(x))|∇β(x)| ,

and in this case, we do not distinguish between Hc2 and Hc3 .
However, if

λ
3/2
0 min

x∈Γblk

|∇β(x)| > min
x∈Γbnd

λ0(R+, θ(x))|∇β(x)| , (61)

the phenomenon of surface superconductivity is observed in
decreasing magnetic fields. Superconductivity will nucleate near
the minima of the function

Γbnd 3 x 7→ λ0(R+, θ(x))|∇β(x)| .
In this case, a natural definition of Hc2(κ) can be,

Hc2(κ):=
κ2

α2
, (62)

for large values of κ , with

α2 = λ
3/2
0 min

x∈Γblk

|∇β(x)| .
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The methods in [10] suggest that the monotonicity of the
eigenvalue λN(tF ) for large values of t can be obtained in the case
when (61) is satisfied. A necessary step is to find the second
correction term in (56). The work in [26] is along this direction.
Clearly, the condition in (24) is violated when the intensity H is
comparable with the critical value Hc3(κ) ≈ κ2, thereby preventing
the application of the results of Attar [3].
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The limiting problem: E (L)

We come back to the analysis of the limiting function E (·) function
which arises as the limit of a certain simplified Ginzburg-Landau
functional with a magnetic field vanishing along a line.
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The Montgomery operator

Consider the self-adjoint operator in L2(R2)

P = −
(
∂x1 − i

x2
2

2

)2

− ∂2
x2
. (63)

The ground state energy

λ0 = inf σ(P) (64)

of the operator P is described using the Montgomery operator as
follows.
If τ ∈ R, let λM(τ) be the first eigenvalue of the Montgomery
operator [27],

P(τ) = − d2

dx2
2

+
(x2

2

2
+ τ
)2
, in L2(R) . (65)
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Notice that the eigenvalue λM(τ) is positive, simple and has a
unique positive eigenfunction ϕτ of L2 norm 1. There exists a
unique τ0 ∈ R such that

λM0 = λM(τ0) . (66)

Hence λ0 > 0. We write

ϕ0 = ϕτ0

Moreover (see [18] and references therein) the minimum of λM at
τ0 is non-degenerate.
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A one dimensional energy

Here λ = λM .
Let b > 0 and α ∈ R and consider

E1D
α,b(f ) =

∫ ∞
−∞

(
|f ′(t)|2 +

(
t2

2
+ α

)2

|f |2 − b |f (t)|2 +
b

2
|f (t)|4

)
dt ,

(67)
defined on B1(R) = {f ∈ H1(R;R) : t2f ∈ L2(R)} .
Let z1(b) and z2(b) satisfying,

z1(b) < τ0 < z2(b) , λ−1
(
[τ0, b)

)
= (z1(b), z2(b)) . (68)

Notice that, if b < λ(0) , then z2(b) < 0 .
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Theorem

1. E1D
α,b has a non-trivial minimizer in B1(R) if and only if

λM(α) < b .
Furthermore, there exists a non-trivial positive minimizer fα
and ±fα are the only real-valued minimizers.

2. Let
β(α, b) = inf{E1D

α,b(f ) : f ∈ B1(R)} . (69)

Then ∃α0 ∈ (z1(b), z2(b)) s.t.

β(α0, b) = inf
α∈R

β(α, b) . (70)

3. If b < λM(0), then α0 < 0 .

4. ∫ ∞
−∞

(
t2

2
+ α0

)
|fα0(t)|2 dt = 0 . (71)
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The proof of this theorem can be adapted from the analysis of
Fournais-Helffer [8, Sec. 14.2] devoted to the functional

F1D
α,b(f ) =

∫ ∞
0

(
|f ′(t)|2 + (t + α)2 |f (t)|2 − b|f |2 +

b

2
|f |4
)

dt .

(72)
We note that a minimizer of E1D

α,b satisfies the Euler-Lagrange
equation:

− f ′′(t) + (
t2

2
+ α)2f (t)− bf (t) + bf (t)3 = 0 , (73)

and that f ∈ S(R) .
We also observe that the functional E1D

α,b has non-trivial minimizers
if and only if α ∈ (z1(b), z2(b)).
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Reduced Ginzburg-Landau functional

Let L > 0, R > 0, SR = (−R,R)× R and

A(x) =
(
− x2

2

2
, 0
)
,
(
x = (x1, x2) ∈ SR = (−R,R)× R

)
. (74)

Consider the functional

EL,R(u) =

∫
SR

(
|(∇− iA)u|2 − L−2/3|u|2 +

L−2/3

2
|u|4
)

dx ,

(75)
and the ground state energy e(L;R) of EL,R

inf{EL,R(u) : (∇−iA)u ∈ L2(SR) , u ∈ L2(SR) , and u = 0 on ∂SR} .
(76)
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Following the analysis in [29] and [16, Theorem 3.6], we can prove
that the functional in (75) has a minimizer. The value of the
ground state energy defined in (76) is related to the eigenvalue λ0

in (66). We will find that the energy vanishes when L ≥ λ−3/2
0 ,

and we will give a rough estimate of the energy when L→ λ
−3/2
0 .

Proposition

For R > 0, L > 0,

1. If L ≥ λ−3/2
0 , then e(L;R) = 0 .

2. There exist positive C1, C2 and C3 such that, if L < λ
−3/2
0

and R > 0, then

−C1 L
−4/3R ≤ e(L;R)

(1− λ0L2/3)
≤ −C2 L

−2/3R +
C3

R
. (77)
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One can prove that:

1. If L ≥ λ−2/3
0 , then ϕL,R = 0 is the minimizer of the functional

in (75) realizing the ground state energy in (76).

2. If L ≤ λ−2/3
0 , every minimizer ϕL,R satisfies,∫

SR |(∇− iA)ϕL,R(x)|2 dx ≤ CL−4/3 ,∫
SR |ϕL,R(x)|2 dx ≤ CL−2/3R .

(78)
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Notice that the energy EL,R(u) in (75) is invariant under
translation along the x1-axis. This allows us to follow the approach
in [14, 29] and obtain that the limit of e(L;R)

R as R →∞ exists.
The precise statement is:
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Theorem

Given L > 0, there exists E (L) ≤ 0 such that,

lim
R→∞

e(L;R)

2R
= E (L) .

(0,∞) 3 L 7→ E (L) ∈ (−∞, 0] is continuous, monotone
increasing and

E (L) = 0 if and only if L ≥ λ−3/2
0 .

Furthermore,

∀ R > 0 , ∀L > 0 , E (L) ≤ e(L;R)

2R
, (79)

and

∀ R ≥ 2 , ∀L > 0 ,
e(L;R)

2R
≤ E (L)+C

(
1 + L−2/3

)
R−2/3 . (80)
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It would be desirable to establish a simpler expression of E (L)

when L ∈ (λM(0)−
3
2 , λ

− 3
2

0 ) :

Conjecture

If
λ0 < L−2/3 < λM(0) , (81)

then
E (L) = E 1D(L−2/3) .

Here, for b > 0, E 1D(b) = β(α0, b) and β(α0, b) is defined in
(70).
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In the case of a constant magnetic field, a similar statement to this
Conjecture has been conjectured by X. Pan (2002) in [29]. As
already mentioned, partial affirmative answers were given in
Almog-Helffer [2] and Fournais-Helffer-Persson[13]. The conjecture
has been finally proved recently by Correggi-Rougerie in [6, 7].
Their methods do not work in the case considered here.
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