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The starting point on the mathematical side was a paper of Yaniv
Almog at Siam J. Math. Appl. . This work was continued in
collaboration with Y. Almog and X. Pan by the analysis of specific
toy models. Then, in collaboration with Y. Almog, we treat a
rather general situation and show how the toy models are involved
in the question. A new paper with Y. Almog and X. Pang treats
the question of the localization of the solution in presence of a
strong electric current.
The techniques used in this work appear to be useful in other
contexts (Control theory (Beauchard-Henry-Helffer-Robbiano,
Henry, Almog-Henry) or in magnetic resonance (Grebenkov,
Grebenkov-Helffer-Henry)
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Time-independent Ginzburg-Landau functional

We recall that the Ginzburg-Landau functional is given by

Gκ,H [ψ,A] =∫
Ω

{
|∇κHAψ|2 − κ2|ψ|2 + κ2

2 |ψ|
4

+κ2H2| curl A− β|2
}
dx ,

with

I Ω simply connected,

I (ψ,A) ∈W 1,2(Ω;C)×W 1,2(Ω;R2),

I ∇A = (∇+ iA).

We fix the choice of gauge by imposing that

div A = 0 in Ω , A · ν = 0 on ∂Ω .
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Time Dependent Ginzburg-Landau equation.

Consider a superconductor placed at a temperature lower than the
critical one. It is well-understood from numerous experimental
observations, that a sufficiently strong current, applied through the
sample, will force the superconductor to arrive at the normal state.
To explain this phenomenon mathematically, we use the
time-dependent Ginzburg-Landau model which is defined by the
following system of equations, and will be referred to as (TDGL1)
(Time Dependent Ginzburg-Landau equation).
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If instead of applying an external magnetic field, we pass an
electric current through Ω, we can no longer find (ψ,A) by looking
for critical points of G. Instead, we need to consider the
time-dependent Ginzburg-Landau equations, originally obtained by
Gor’kov and Eliashberg [28]. These are given, in terms of the
energy G, by

∂ψ

∂t
+ iκφ =

δG
δψ̄

(1a)

σ

κ2

(∂A
∂t

+∇φ
)

=
δG
δA

. (1b)

In the above, φ is the electric potential and σ is the dimensionless
normal conductivity. If φ ≡ 0, then, as can be easily verified, G
becomes a Lyapunov function, and the solution will converge as
t →∞ to a critical point of G [22]. If, however, an electric current
is applied on the boundary, φ 6≡ 0, and the analysis of the problem
becomes much more difficult.
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(TDGL1)

∂ψ

∂t
+ iφψ = (∇− iA)2 ψ + ψ

(
1− |ψ|2

)
, in R+ × Ω ,

(2a)

κ2 curl 2A + σ

(
∂A

∂t
+∇φ

)
= Im (ψ̄ · (∇− iA)ψ) , in R+ × Ω ,

(2b)

ψ = 0 , on R+ × ∂Ωc ,
(2c)

(∇− iA)ψ · ν = 0 , on R+ × ∂Ωi ,
(2d)

σ

(
∂A

∂t
+∇φ

)
· ν = J , on R+ × ∂Ωc ,

(2e)

σ

(
∂A

∂t
+∇φ

)
· ν = 0 , on R+ × ∂Ωi .

(2f)
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1

|∂Ω|

∫
∂Ω

curl A(t, x) ds = hex , on R+ , (1g)

ψ(0, x) = ψ0(x) , in Ω , (1h)

A(0, x) = A0(x) , in Ω , (1i) .
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In the above ψ denotes the order parameter, A is the magnetic
potential, φ is the electric potential, κ denotes the
Ginzburg-Landau parameter, which is a material property, and the
normal conductivity of the sample is denoted by σ. ds denotes the
induced measure on ∂Ω. The domain Ω ⊂⊂ R2, occupied by the
superconducting sample, has in a subset of ∂Ω, a smooth
interface, denoted by ∂Ωc , with a conducting metal which is at the
normal state.
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We require that ψ would vanish on ∂Ωc in (2c), and allow for a
smooth current

J = hJr ,

satisfying
(J1) Jr ∈ C 2(∂Ωc), (4)

to enter the sample in (2e).
We further require that

(J2)

∫
∂Ωc

Jr ds = 0 , (5)

and

(J3) the sign of Jr is constant on each connected component of ∂Ωc .
(6)

We allow for Jr 6= 0 at the corners. (By convention, Jr = 0 on
∂Ω \ ∂Ωc).
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The rest of the boundary, denoted by ∂Ωi is adjacent to an
insulator. To simplify some of our arguments (or simply have a
proof) we introduce the following geometrical assumption on ∂Ω:

(R1)


(a) ∂Ωi and ∂Ωc are of class C 3 ;
(b) Near each edge, ∂Ωi and ∂Ωc are flat

and meet with an angle of π
2 .

(7)

We also require:

(R2) Both ∂Ωc and ∂Ωi have two components. (8)
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Figure 1 presents a typical sample with properties (R1) and (R2).
Most wires would fall into the above class of domains.
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We assume, for the initial conditions (2h,i), that

ψ0 ∈ H1(Ω,C) and A0 ∈ H1(Ω,R2) , (9)

and:
‖ψ0‖∞ ≤ 1 . (10)

We mainly consider Coulomb gauge solutions of (2):

div A = 0 in Ω, A · ν = 0 on ∂Ω . (11)

Note that for the proof of existence of solutions it is better to
consider first solutions in the Lorentz gauge:

φ = ω div A .
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Equivalent boundary conditions.
Instead of considering the boundary conditions (2e,f,g), it is
possible to use an equivalent boundary condition where we
prescribe instead the magnetic field at the boundary. By (2b,e,f),
on each point on ∂Ω, except for the corners, we have

∂

∂τ
curl A(t, ·) =

1

κ2
J(·) , (12)

where ∂/∂τ denotes the tangential derivative along ∂Ω in the
positive direction. For convenience we set

Jr (x) ≡ 0 on ∂Ωi . (13)

Thus, if we introduce on the boundary the function Br by

curl A(t, x) = h Br (t, x) on ∂Ω , (14)

where h denotes a parameter measuring the intensity of the
magnetic field.
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One can recover the magnetic field Br (t, ·)

Br (t, x) = hr−
1

κ2 |∂Ω|

∫
∂Ω
|Γ(x̃ , x)| Jr (x̃)ds(x̃) for x ∈ ∂Ω . (15)

where hex = hhr , J = hJr and |Γ(x̃ , x)| is the length inside the
boundary between x and x̃ .
This shows that Br (t, x) = Br (x) on the boundary, hence
independent of t.
Note also that

The magnetic field Br is constant along each component of ∂Ωi .
(16)
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Hence the system (TGDL1) is equivalent to the system (TGDL2).
We have the same equations except that (1e-1g) is replaced by

curl A(t, x) = hBr (x) , on R+ × ∂Ω , (17)

where Br is given by (15).
Of course functional spaces should be introduced to give a precise
mathematical sense to this statement of equivalence.
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(TDGL2)

∂ψ

∂t
+ iφψ = (∇− iA)2 ψ + ψ

(
1− |ψ|2

)
, in R+ × Ω ,

(18a)

κ2 curl 2A + σ

(
∂A

∂t
+∇φ

)
= Im (ψ̄ · (∇− iA)ψ) , in R+ × Ω ,

(18b)

ψ = 0 , on R+ × ∂Ωc ,
(18c)

(∇− iA)ψ · ν = 0 , on R+ × ∂Ωi ,
(18d)

curl A(t, x) = h Br (x) on ∂Ω× R+ ,
(18e)

ψ(0, x) = ψ0(x) , in Ω ,
(18f)

A(0, x) = A0(x) , in Ω .
(18g)
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Conversely, a solution of (TGDL2) must satisfy (TGDL1) with

Jr = κ2∂Br

∂τ
on ∂Ω ,

and

hr =
1

|∂Ω|

∫
∂Ω

Br (x)ds .

B. Helffer, Univ Nantes –Univ. Paris-Sud Global stability



Stationary normal solutions.

If we assume time independence and a solution of (TDGL1) in the
form (0,An, φn), we get for the magnetic and electric normal
potentials An and φn. These equations are obtained by setting
ψ ≡ 0 in (2b), yielding

−c curl 2An +∇φn = 0 in Ω ,

−σ ∂φn∂ν = Jr on ∂Ω ,
1
|∂Ω|

∫
∂Ω curl An ds = hr ,

in which c = κ2/σ, Jr and hr respectively denote some reference
electric current and magnetic field.
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If we fix the Coulomb gauge for An, we can prove the existence,
uniqueness, and regularity of solutions to the above problem.
Note that φn is a solution of

∆φn = 0

∫
Ω
φndx = 0 ,

and

−σ∂φn
∂ν

= Jr .

This is Neumann but for a problem with corners ! H2-regularity is
OK when the angles are π

2 .
See Kondratev, Grisvard, Dauge for these questions of regularity.
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The next assumption (which can be expressed in term of Jr and
hr ), is

(B) Bn 6= 0 at the corners , (19)

where Bn = curl An.
For some of the results, we assume for technical reasons

(C ) ∇φn ⊥ ∂Ω on B−1
n (0) ∩ ∂Ω . (20)
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One possible mechanism which contributes to the breakdown of
superconductivity by a strong current is the magnetic field induced
by the current.
In the absence of electric current, we have seen (Giorgi-Phillips)
that, when a sufficiently strong magnetic field is applied, the
normal state, becomes the unique solution of the time-independent
Ginzburg-Landau model.
For the time-dependent Ginzburg-Landau equations it was proved
in Feireisl-Takac [22] that every solution must reach an equilibrium
in the long-time limit. When combined with Giorgi-Phillips it
follows that when the applied magnetic field is sufficiently large the
normal state becomes globally stable.
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No such result was available in the presence of electric currents.

The results in Feireisl-Takac [22] are based on the fact that, in the
absence of currents, the Ginzburg-Landau energy functional serves
as a Lyapunov functional.

The message of our analysis is that the magnetic field is not the
only mechanism which forces the sample into the normal state
when the electric current is sufficiently large.
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Consider the reduced model where one neglects the induced
magnetic field and set A ≡ 0 in (2). It has been proved in
[38, 50, 3] that the normal state is at least locally stable when the
current is sufficiently strong.
This corresponds to the model −∆x ,y + icy .
In Part B, we have computed a critical current where the normal
state looses its local stability tends to the critical value for the
reduced model [38] in the small conductivity limit c → 0, or when
c →∞. This result suggests that stability is being forced not only
by the magnetic field that the current induces, but also by the
potential term in (2a).

B. Helffer, Univ Nantes –Univ. Paris-Sud Global stability



We now describe some of the results of a recent paper with Y.
Almog, where we prove global stability of the normal state, as a
solution of (2), for sufficiently large currents and mention also a
recent paper by Almog-Helffer-Pan.
We have first to prove the global existence and uniqueness of
solutions for (2) and obtain their regularity.
While these questions have previously addressed (cf.
Chen-Hoffmann-Liang [12], [23], and [16] to name just a few
references) the fact that the boundary is not smooth at the corners
requires some additional attention.
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A non self-adjoint operator.

If (0, φn,An) is the normal steady state, let

Lh = −∇2
hAn

+ i hφn ,

be defined over the domain

D(Lh) = {u ∈ H2(Ω) | u|∂Ωc = 0 ; ∇u · ν|∂Ωi
= 0 } .

We prove that a proper bound on the resolvent of Lh, which is the
elliptic operator in (2a) linearized near (0, hAn, hφn) gives the
stability.
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We want to prove global stability of the normal state, as a solution
of (2), for sufficiently large currents. We begin by proving global
existence and uniqueness of solutions for (2) and obtain their
regularity. While these questions have previously addressed (cf.
[12], [23], and [16] to name just a few references) the fact that the
boundary is not smooth at the corners requires some additional
attention.
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We prove that if the current is strong enough, the magnetic field
induced by this current forces the semigroup associated with (2) to
become asymptotically a contraction. Let

µ(h) = inf
u∈H1(Ω,C)

u|∂Ωc =0 ; ‖u‖2=1

‖∇hAnu‖2
2 .

This is simply the ground state energy of the magnetic Laplacian
(selfadjoint part of Lh). Under our assumptions, this is a
Montgomery semi-classical Operator with Dirichlet-Neumann
boundary condition.
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Analysis of the linearized problem

Consider first the linearized version of (2a):
∂u
∂t + Lu = 0 , in R+ × Ω ,

(i∇+ hAn)u · ν = 0 , on R+ × ∂Ωi ,

u = 0 , on R+ × ∂Ωc ,

u(0, ·) = u0(·) , in Ω .

(21)

In the above
−L = (∇− ihAn)2 + ihφn + 1 .

It is easy to show using integration by parts that for any v ∈ D(L)
we have

〈v ,Lv〉 =
∥∥∇hAnv

∥∥2

2
− ‖v‖2

2 .

Hence
〈v ,Lv〉 ≥ (µ− 1)‖v‖2

2 .

B. Helffer, Univ Nantes –Univ. Paris-Sud Global stability



Note that if v is a ground state of L the above inequality becomes
an identity. Hence, it follows that the operator L is accretive if and
only if µ ≥ 1. Consequently, it is easy to show from the
Lumer-Phillips Theorem (Theorem 8.3.5 in [13]) that the
semigroup associated with (21) is a contraction semigroup if and
only if µ ≥ 1. If µ > 1 one can easily show that any solution of
(21) decays exponentially fast (with a decay like exp−(µ− 1)t )
and hence, that u ≡ 0 is asymptotically stable.
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If we now consider the linearized part of (2b), (after taking its
curl), we get the equation for the first variation w of curl A

σ∂tw − κ2∆w = 0 in R+ × Ω ,

w(t, ·) = 0 on R+ × ∂Ω ,

w(0, ·) = w0(·) on Ω .

From the above we can conclude an O(e−λDct)-decay for w(t, ·),

where λD is the Dirichlet Laplacian and c = κ2

σ .
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The first result (Almog-Helffer) is the following

Theorem 1

Let (ψ,A, φ) denote a solution of (2) and (11) satisfying (10).
Then, there exists γ > 0 for which whenever

µ(h) > 1 +
γ

κ2
+
γ2

κ4
, (22)

there exist C = C (Ω, κ, c , ‖ψ0‖2, ‖A0‖2, h) > 0 and
λm = λm(c , κ, µ(h),Ω) > 0 such that, for all t > 0, we have:

‖ψ‖2 + ‖A− hAn‖2 + ‖φ− hφn‖2 ≤ Ce−λmt . (23)
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Note that (23) means that the semigroup associated with the
linearized version of (2) is a contraction. Precise values of γ, λm,
can be established in the large κ limit.
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Theorem 2

Let ν ≥ 0. There exists κ0 > 0 and C1 > 0 such that, if for some
κ > κ0 we have

sup
γ∈R
‖(Lh − iγ − ν)−1‖ < 1− C1

κ2
, (24)

then, any solution of (2) must satisfy∫ ∞
0

e2νt ‖ψ(t, ·)‖2
2 dt <∞ . (25)
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The above stability is proved in the large κ limit and we treat the
same system, scaled with respect to the penetration depth, which
is obtained by applying the transformation x → x/κ in (2).
As the resolvent of Lh in an arbitrary domain is difficult to control,
we provide an estimate of its norm for large values of h, which can
be applied for either large domains, or large κ values.
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Large domains ΩR

Our aim is to show that the norm of the resolvent can be
controlled from two approximated problems, with constant current
defined either in R2 or in R2

+ with Dirichlet boundary conditions.
From resolvent estimates, together with the results of
Almog-Helffer-Pan in [6, 4, 5] we deduce that the critical current,
for which the normal state looses its local stability, can be
approximated by the same critical current obtained for the above
R2

+ problem. Before to state the result let us describe the toy
models.
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Two toy models

We now give the definitions of these model operators in R2 and
R2

+ = {y > 0}. They were analyzed in Part B.
These models depend on two real parameters c 6= 0 and j.
The first one is

A(j, c) = D2
x + (Dy − jx2)2 + icjy , (26)

defined on

D(A) = {u ∈ L2(R2) | Au ∈ L2(R2)} . (27)

It has empty spectrum and we have a good control of the resolvent
depending only of the real part of the spectral parameter.

B. Helffer, Univ Nantes –Univ. Paris-Sud Global stability



The second one is A+(j, c), which is defined (via the Lax-Milgram
theorem) by the same differential formula of A but on the domain

D(A+) = {u ∈ Ṽ : A+u ∈ L2(R2
+,C)}, (28)

where
Ṽ = H1,mag

0 (R2
+,C) ∩ L2(R2

+,C; y dxdy) . (29)

Here the analysis of the spectrum is more difficult. The guess is
that it is non-empty. This is only proven for |c | large enough or
small enough.
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Towards the last theorem

Set, for z ∈ Ω̄,

j(z) := h|∇Bn(z)| =
h

c
|∇φn(z)| , (30)

and then define,

A(z) = A(j(z), c) ; A+(z) = A+(j(z), c) (31)
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Under the above assumptions B−1
n (0) is either empty, or else

consists of a single curve Γ connecting between the two connected
components of ∂Ωc .
We treat the second case. We denote the two points of
intersection by z1 and z2 and then set

νm(z1, z2, c) = min
i=1,2

inf
λ∈σ(A+(zi ))

Reλ . (32)
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Large domain limit

Let then R > 0. We denote by ΩR the image of Ω under the
dilation x → R x We assume that the domain Ω has the property
(R1)-(R2) and that assumptions (J1)-(J3), (B) and (C) are met.
Denote the transformed electric field by φR . It satisfies the problem{

∆φR = 0 in ΩR ,
∂φR
∂ν = −JR(x)

σ on ∂ΩR ,

where
JR(x) = Jr (x/R) .
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Note that
φR(x) = R φn(x/R) .

The transformed magnetic potential, which we denote by AR then
satisfies

AR(x) = R2 An(x/R) .

Let then
LRh = −∇2

hAR
+ ihφR , (33)

and let

µ(R) = inf
λ∈σ(LRh )

Reλ and µ∞ = lim inf
R→∞

µ(R) . (34)
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We can now state

Theorem 3

Under the previous assumptions,

µ∞ = νm .

Furthermore, let ν < µ∞. Then, ∃ R0, C , such that, for R ≥ R0,

sup
γ∈R
‖(LRh − ν − iγ)−1‖ ≤

max
(

sup
z0∈Γ
‖(A(z0)−ν)−1‖, sup

γ∈R
i=1,2

‖(A+(zi )−ν−iγ)−1‖
)(

1+
C

R1/4

)

+
C

R1/4
. (35)
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One can deduce from (35) an upper bound for the critical current
where the normal state (0, hAn, hφn) becomes globally stable. Let

jm = inf
z∈Γ

j(z) , (36a)

and
j+ = inf

i=1,2
j(zi ) . (36b)
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When the domain size is multiplied by R, the resolvent norm of Lh
is given by the left-hand-side of (35). By (24) it then follows that
if R and κ are sufficiently large, and if

jm > ‖A−1(1, c)‖3/2 (37a)

and
j+ > sup

γ∈R
‖(A+(1, c)− iγ)−1‖3/2 , (37b)

then the normal state must be globally stable. The above
conditions serve as an upper bound for the critical current where
the normal state becomes globally stable.
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On the semiclassical side

This corresponds to the spectral analysis of∑
j

(~Dxj − Aj)
2 + i~φ(x) ,

in the limit ~→ 0. With φ = 0, this analysis plays an important
role in the analysis of the superconductivity. In the above
questions, we have ∇φ · ∇ curl A = 0 and the zeros of curl A
consists in a curve Γ joining two points of the boundary where the
Dirichlet condition is assumed.
When A = 0, we look more simply at

Ah := −h2∆ + iφ .

This is what we discuss now.
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More recent results by R. Henry (2013), see also
Almog-Henry (2015)

We first focus on the case where the potential φ has no critical
point:

Theorem 4

Let n ≥ 1 and φ ∈ C∞(Ω̄;R) with ∇φ(x) 6= 0 . Let

∂Ω⊥ = {x ∈ ∂Ω : ∇φ(x)× ~n(x) = 0} . (38)

Assume that ∂Ω⊥ 6= ∅ . Let µ1 < 0 be the rightmost zero of the
Airy function , and let

Jm = min
x∈∂Ω⊥

|∇φ(x)| . (39)

Then we have

lim
h→0

1

h2/3
inf Reσ(Ah) ≥ |µ1|

2
J

2/3
m . (40)

B. Helffer, Univ Nantes –Univ. Paris-Sud Global stability



The last inequality can be shown to be an equality under some
additional assumption.
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Theorem 4 continued

Moreover, for every ε > 0 , ∃hε ∈ (0, h0) and ∃Cε > 0 such that

∀h ∈ (0, hε), sup
γ ≤ |µ1|J2/3/2,

ν ∈ R

‖(Ah − (γ − ε)h2/3 − iν)−1‖ ≤ Cε
h2/3

.

(41)

Assume now that ∂Ω⊥ = ∅ , then

lim
h→0

1

h2/3
inf Reσ(Ah) = +∞ ,

and for all ω ∈ R , ∃hω > 0 and C ′ω > 0 such that

∀h ∈ (0, hω) , sup
γ ≤ ω,
ν ∈ R

‖(Ah − γh2/3 − iν)−1‖ ≤ C ′ω
h2/3

. (42)
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This result is essentially a reformulation of those stated by
Y. Almog, but the proof of Henry is based on locally approximating

models. That |µ1|
2 J

2/3
m is the exact limit for h−2/3 inf Reσ(Ah) as

h→ 0 was till recently open (except in the (1D)-case). This has
been solved in a new paper (2015) by Almog-Henry (see also
Grebenkov-Helffer (2016)).
In the case where the potential V has critical points in the interior
of Ω, the spectrum of Ah is expected to behave differently. The
following statement shows that the quantity inf Reσ(Ah) is no
longer determined by the behavior at the boundary, but by the
shape of the potential near the critical points.
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Theorem 5

Let φ be a Morse function on Ω̄ and xc1 , . . . , x
c
p the critical points

of φ. Let

κk =
n∑

j=1

√
|λkj | , where {λkj }j=1,...,n = σ(Hessφ(xck )) . (43)

Let κ = mink=1,...,p κk , and assume that, if κk = κ , then ∀` 6= k ,

φ(xck ) 6= φ(xc` ) . (44)

Then,

lim
t→0

1

h
inf Reσ(Ah) =

κ

2
. (45)

Moreover, ∀ε > 0 , ∃hε ∈ (0, h0) and ∃Cε > 0 s.t.

∀h ∈ (0, hε), sup
γ ≤ κ/2,
ν ∈ R

‖(Ah − (γ − ε)h − iν)−1‖ ≤ Cε
h
. (46)
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The assumption (44) is meant to avoid any resonance phenomenon
between two wells. Note that, unlike in Theorem 4, we give here
the exact limit for h−1 inf Reσ(Ah) .
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The previous theorems enable us to state some decay estimates for
the semigroup associated with Ah.

Corollary

For all ε > 0, there exists hε ∈ (0, h0) and Mε > 0 such that:

(i) Under Assumptions of Theorem 4, ∀h ∈ (0, hε) , ∀t > 0

‖e−tAh‖L(L2(Ω)) ≤ Mε exp(−(|µ1|J2/3
m /2− ε)h2/3t) . (47)

(ii) Under Assumptions of Theorem 5, ∀h ∈ (0, hε) , ∀t > 0

‖e−tAh‖L(L2(Ω)) ≤ Mε exp(−(κ/2− ε)ht) . (48)

This corollary follows by using a refined, quantitative version of the
Gearhardt-Prüss Theorem due to Helffer-Sjöstrand.
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Decay estimates (after Almog-Helffer-Pan (2015)

We now focus attention on the exponential decay of ψ in regions
where |Bn| > 1. For steady-state solutions of (2) in the absence of
electric current (J = 0) we may set φ ≡ 0 and the magnetic field is
then constant on the boundary. The exponential decay of ψ away
from the boundary has been termed “surface superconductivity”
and has extensively been studied (see Fournais-Helffer (book)).
More recently, the case of a non-constant magnetic field has been
studied as well (Attar (2013-2014), Helffer-Kachmar (2015),...). In
these works φ still identically vanishes but nevertheless ∇Bn 6= 0 in
view of the presence of a current source term curl hex in (2b). In
particular in Helffer-Kachmar (2015, 2016) it has been established,
in the large κ limit for the case 1� h� κ that ψ is exponentially
small away from Γ = B−1

n (0). We refer to Part A (with β = Bn).
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As mentioned above, in the absence of electric current the
time-dependent solutions is of lesser interest, since it converges to
a steady-state solution [41, 22]. This result has been obtained in
[22] by using the fact that the Ginzburg-Landau energy functional
is a Lyapunov function in this case. In contrast, when J 6= 0 this
property of the energy functional is lost, and convergence to a
steady-state is no-longer guaranteed. In [?] the global stability of
the normal state has been established for h = O(κ) in the large κ
limit. Solutions of (2), for much weaker current densities
(J ∼ O(lnκ)) have been addressed in [54]. Whereas simplified
model for strong magnetic fields have been addressed in [19, 33].
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For the same limit, we explore now the behavior of the solution for
1 < h� κ , and establish exponential decay of ψ in every
subdomain of Ω where |Bn| > 1. We do that for both steady-state
solutions (whose existence we need to assume) and time-dependent
ones. We also study the large-domain limit, where we obtain
weaker results for steady-state solutions only. Let, for j = 1, 2,

ωj = {x ∈ Ω : (−1)jBn(x) > 1} , (49)

where Bn is the normal magnetic field.
Our first decay theorem concerns steady state solutions and their
exponential decay, in certain subdomains of Ω, in the large κ limit.
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Steady State Main Theorem

Let for κ ≥ 1, (ψκ,Aκ, φκ) be a time-independent solution of (2).
Suppose that for some j ∈ {1, 2} we have

1 < |hj | . (50)

Then, for any compact set K ⊂ ωj ∪ ∂Ωc , there exist C > 0,
α > 0, and κ0 ≥ 1, such that for any κ ≥ κ0 we have∫

K
|ψκ(x)|2 dx ≤ Ce−ακ . (51)

If, in addition,
1

Θ0
< |hj | , (52)

then (51) is satisfied for any compact subset K ⊂ ωj ∪ (ωj ∩ ∂Ωc).
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In addition, we establish a weaker decay of ψκ in all Ω.

Proposition

Under the assumptions of the theorem, there exists C (J,Ω) > 0
such that, for κ ≥ 1,

‖ψκ‖L2(Ω,C) ≤ C (J,Ω) (1 + c−1/2)1/3κ−1/6 . (53)
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Steady State Main Theorem is extended to the time dependent
case in the following way.

Theorem

Let (ψκ,Aκ, φκ) denote a time-dependent solution of (2).
Assuming c = 1, under the conditions of the main theorem and in
addition on the initial condition, for any compact set
K ⊂ ωj ∪ ∂Ωc there exist C > 0 , α > 0, and κ0 ≥ 1, such that for
any κ ≥ κ0 we have

lim sup
t→∞

∫
K
|ψκ(t, x)|2 dx ≤ Ce−ακ . (54)
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Finally, we consider steady-state solutions of (2) in the large
domain limit. More precisely, we set κ = c = 1 and stretch Ω by a
factor of R � 1. Let ΩR be the image of Ω under the map
x → Rx . We consider again steady-state solutions of (2) in ΩR :

∆Aψ + ψ
(
1− |ψ|2

)
− iφψ = 0 in ΩR , (55a)

curl 2A +∇φ = Im (ψ̄∇Aψ) in ΩR , (55b)

ψ = 0 on ∂ΩR
c , (55c)

∇Aψ · ν = 0 on ∂ΩR
i , (55d)

∂φ

∂ν
=

F (R)

R
J on ∂ΩR

c , (55e)

∂φ

∂ν
= 0 on ∂ΩR

i , (55f)

1

|∂Ω|

∫
∂ΩR

curl A(x) ds = F (R)hex . (55g)
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We study the above problem in the limit R →∞, supposing
F (R)� 1 in that limit, where we establish the following result:

Proposition

Let (ψ,A, φ) denote a solution of (55) in ΩR . Then, there exists a
compact set with non empty interior K ⊂ Ω , C > 0, R0 > 0, and
α > 0, such that for any R > R0 we have∫

KR

|ψ(x)|2 dx ≤ Ce−αR , (56)

where KR is the image of K under the map x → Rx .
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Note that in the above proposition hex must be of the same order
as J, otherwise (0,An, φn) would be the unique solution.
Physically (56) demonstrates that there is a significant portion of
the superconducting sample which remains, practically, at the
normal state, for current densities which may be very small. This
result stands in contrast with what one finds in standard physics
handbooks [47] where the critical current density, for which the
fully superconducting state looses its stability, is tabulated a
material property. However, our results suggest that the critical
current depends also on the geometry of the superconducting
sample. In fact, according to the large domain proposition, this
current density must decay in the large domain limit. In
two-dimensions, our result suggests that one should search for a
critical current.
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We note that this Proposition for large domains is certainly not
optimal. In fact, we expect the following conjecture to be true.

Conjecture

Under the conditions of Proposition 60, for any compact set
K ⊂ Ω \ B−1

n (0), there exist R0 > 0, C > 0, and α > 0, such that
for any R > R0 (56) is satisfied for any solution (ψ,A, φ) of (55)
in ΩR .
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