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GL Equations

The Ginzburg-Landau (GL) equations of superconductivity are

−∆Aψ + κ2(|ψ|2 − 1)ψ = 0

curl∗ curlA− Im(ψ̄∇Aψ) = 0

where

ψ : R2 → C
A : R2 → R2

and κ is the GL parameter.



Abrikosov Lattice States

Abrikosov lattice states are those whose physical quantities are
periodic with respect to some lattice. Key quantities includes

1 The magnetic field B = curlA

2 The density of states ns = |ψ|2

3 current density J = Im(ψ̄∇Aψ).

Lattice states have quantized magnetic flux per unit cell of the
lattice. ∫

Ω
curlA = 2πn ∈ 2πZ

We classify solutions by flux per unit cell.
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Solutions

There are two obvious lattice solutions

1 Normal state: ψ = 0 and curlA =: b is a constant.

2 Perfect superconductor solution: ψ = 1 and A = 0.

We can bifurcate a mixed state from the normal state.

Theorem (I.M. Sigal, T. Tzaneteas (2011))

Under suitable assumptions on parameters, a unique lattice
solution (upto symmetry), with 1 flux per unit cell, exists in a
neighbourhood of the normal branch.

Remark: asymptotics, in terms of the bifurcation parameter, are
also given.
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Idea of the Proof: Bifurcation via Lyapunov-Schmidt
Procedure

Fix a lattice L = Z + τZ for Im τ > 0 and a flux 2πn =
∫

Ω curlA.
The linearized GL equations at a normal state (0,Ab) such that
curlAb = b is(

−∆Ab
− κ2 0

0 curl∗ curl

)(
ψ′

A′

)
= 0



Linear Analysis

The operator curl∗ curl has an infinite dimensional kernel, namely
the ones of the form ∇χ. By appropriate gauge fixing, we can
consider A of the form ab + α := b

2J + α, where

1 〈α〉 = 0

2 divα = 0

3 α is periodic with respect to L.

One can further show that curl∗ curl on such space is positive
definite.



Linear Analysis

The operator curl∗ curl has an infinite dimensional kernel, namely
the ones of the form ∇χ. By appropriate gauge fixing, we can
consider A of the form ab + α := b

2J + α, where

1 〈α〉 = 0

2 divα = 0

3 α is periodic with respect to L.

One can further show that curl∗ curl on such space is positive
definite.



Linear Analysis

−∆ab has discrete spectrum. Moreover, ψ is a ground state if and
only if

θ(z) = e
b
4

(|z|2−z2)ψ(z)

is holomorphic.

When periodic condition is taken into
consideration, the ground state space becomes finite dimensinoal,
whose dimension equals n. This associated space of theta
functions will be denoted by Vn.



Linear Analysis

−∆ab has discrete spectrum. Moreover, ψ is a ground state if and
only if

θ(z) = e
b
4

(|z|2−z2)ψ(z)

is holomorphic. When periodic condition is taken into
consideration, the ground state space becomes finite dimensinoal,
whose dimension equals n. This associated space of theta
functions will be denoted by Vn.



Remark: periodicity condition translates to the theta functions as

θ(z + 1) = θ(z)

θ(z + τ) = e−2πinze−πinτθ(z)



If n = 1, then the linear problem has C = R2 solutions. But global
gauge symmetry reduces this to 1 real dimension. So standard
bifurcation techniques works to result a solution.

But in general, we would like to solve for n > 1.

Methods:

1 Topological degree theory. Global gauge freedom essentially
gives 2n − 1 real dimensional kernel for the linear operator.

2 Use additional symmetries to reduce the dimension to of Vn

to 1.
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The Immediate Problem

The simplest symmetry would to require the physical quantities be
periodic with respect to a finer lattice. But this gives no new
results as the solution is in some sense reducible.



A Solution

Observation 1: If a function has 2 zeros yet is invariant (or upto a
nonzero factor) under rotation by 2π/3. The two zeros should be
stacked together. Thus it is irreducible.

Observation 2: Not all rotations are allowed. Only those that
leaves the lattice invariant are possible candidates. ⇒ So we
consider hexagonal lattice for allowing maximal rotation group.
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We want to solve GL equations for ψ and α over these two spaces:

L2
ξ,η = {ψ ∈ L2(ΩWS ;C) : ψ(ξx) = ηψ(x)}
~L2
ξ = {α ∈ L2(ΩWS ,R2) : 〈α〉 = 0, divα = 0, α(Rξx) = Rξα(x)}

for some η ∈ S1 ⊂ C and ξ = e2πi/6.

Now, consider the linear problem again. Translating the condition
on ψ to theta functions. We see

θ(ξz) = ηe−iπnξz
2
θ(z)

Remark: it is not clear any such θ should exist at first sight.
Define for each θ : C→ C,

Tξ,n(θ)(z) := e iπnξz
2
θ(ξz)

Lemma

Tξ,n is a linear endomorphism on Vn if n is even.
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Since T 6
ξ,n = 1, it can be completely diagonalized.

Moreover, expanding the relation

Tξ,n(θ)(z) = e iπnξz
2
θ(ξz) = λθ(z)

in z at the origin, we see that λ = ξk , where k is the multiplicity
of zeros of θ at the origin.



Since T 6
ξ,n = 1, it can be completely diagonalized.

Moreover, expanding the relation

Tξ,n(θ)(z) = e iπnξz
2
θ(ξz) = λθ(z)

in z at the origin, we see that λ = ξk , where k is the multiplicity
of zeros of θ at the origin.



Theorem

Every C6-equivariant theta function is a product of the following
theta functions (upto scaling):

1 This theta function has a single zero of multiplicty 2 at the
orgin – We define this to be θ2 from now on.

2 This theta function has 2 simple zeros located on the left
most 2 vertices of the Wigner-Seitz cell – We define this to
be θ0 from now on.

3 This theta function has 4 simple zeros. One zero is at the
origin, the other three are on the midpoint of the left most
three edges of the Wigner-Seitz cell – We define this to be
θ1 from now on.

4 This theta function has 6 simple zeros on W −W o , forming
an orbit of C6.

5 This theta function has 6 simple zeros on W o , forming an
orbit of C6



Using this theorem, we see that

Lemma

With the definition of θ0, θ1, θ2 as above. We have that

Tξ,2θ0 = ξ0θ0

Tξ,4θ1 = ξ1θ1

Tξ,2θ2 = ξ2θ2



Vortex Number Eigenvalue Eigenvectors
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Theorem

Under suitable conditions on parameters, a solution with 2,4,6,8, or
10 vortices per unit cell exists near the normal state. Moreover,
they cannot be regarded as solutions to a finer lattice.



Future Outlook

One can try to solve the equation on

L2
ξ,η = {ψ ∈ L2(ΩWS ;C) : ψ(ξx) = ηψ(x)}
~L2
ξ = {α ∈ L2(ΩWS ,R2) : 〈α〉 = 0, divα = 0, α(Rξx) = Rξα(x)}

for different ξ, η. In fact

Theorem (ξ = η = −1)

Suppose that n = p is an odd prime. Then, the space of odd theta
function is p−1

2 . Moreover, no odd theta function in Vp is
quasi-periodic with respect to a finer lattice of the form

La,b :=
1

a
Z +

τ

b
Z

where a, b ∈ Z.



Future Outlook

1 Any other ξ, η which works?

2 Rotational symmetry about a different point on the lattice not
the origin?

3 Square lattice?

4 Result for general lattice?



Thank you for your attention!


