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GL Equations

The Ginzburg-Landau (GL) equations of superconductivity are

— Ay + K2 ([YF = 1)y =0
curl* curl A — Im(¥)V 4¢0) = 0

where

Y:R?>=C
A:R? 5 R?

and k is the GL parameter.
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Abrikosov lattice states are those whose physical quantities are
periodic with respect to some lattice. Key quantities includes

© The magnetic field B = curl A
@ The density of states ng = [¢)|?
@ current density J = Im(x)V 20)).
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© The magnetic field B = curl A
@ The density of states ng = [¢)|?
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Lattice states have quantized magnetic flux per unit cell of the
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We classify solutions by flux per unit cell.



Solutions

There are two obvious lattice solutions
© Normal state: ¢ =0 and curl A =: b is a constant.
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Solutions

There are two obvious lattice solutions
© Normal state: ¢ =0 and curl A =: b is a constant.

@ Perfect superconductor solution: ¥y =1 and A= 0.

We can bifurcate a mixed state from the normal state.

Theorem (I.M. Sigal, T. Tzaneteas (2011))

Under suitable assumptions on parameters, a unique lattice
solution (upto symmetry), with 1 flux per unit cell, exists in a
neighbourhood of the normal branch.

Remark: asymptotics, in terms of the bifurcation parameter, are
also given.



|dea of the Proof: Bifurcation via Lyapunov-Schmidt
Procedure

Fix a lattice £L =Z + 7Z for Im7 > 0 and a flux 2rn = [, curl A.
The linearized GL equations at a normal state (0, Ap) such that
curlAp = b is

“Dp K20 W\
0 curl® curl A )



Linear Analysis

The operator curl® curl has an infinite dimensional kernel, namely
the ones of the form V. By appropriate gauge fixing, we can
consider A of the form ap + a := gJ + «, where

Q@ (0)=0
Q diva =0
@ « is periodic with respect to L.



Linear Analysis

The operator curl® curl has an infinite dimensional kernel, namely
the ones of the form V. By appropriate gauge fixing, we can
consider A of the form ap + a := gJ + «, where

Q@ (0)=0
Q diva =0
@ « is periodic with respect to L.

One can further show that curl® curl on such space is positive
definite.
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Linear Analysis

—A,, has discrete spectrum. Moreover, 1) is a ground state if and
only if

0(2) = €25 ()

is holomorphic. When periodic condition is taken into
consideration, the ground state space becomes finite dimensinoal,
whose dimension equals n. This associated space of theta
functions will be denoted by V,,.



Remark: periodicity condition translates to the theta functions as

0(z+1) =6(z)

9(2 + 7_) _ e—27rinze—7rim—0(z)
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If n =1, then the linear problem has C = R? solutions. But global
gauge symmetry reduces this to 1 real dimension. So standard
bifurcation techniques works to result a solution.

But in general, we would like to solve for n > 1.

Methods:

© Topological degree theory. Global gauge freedom essentially
gives 2n — 1 real dimensional kernel for the linear operator.

@ Use additional symmetries to reduce the dimension to of V,
to 1.



The Immediate Problem

The simplest symmetry would to require the physical quantities be
periodic with respect to a finer lattice. But this gives no new
results as the solution is in some sense reducible.



A Solution

Observation 1: If a function has 2 zeros yet is invariant (or upto a
nonzero factor) under rotation by 27 /3. The two zeros should be
stacked together. Thus it is irreducible.



A Solution

Observation 1: If a function has 2 zeros yet is invariant (or upto a
nonzero factor) under rotation by 27 /3. The two zeros should be
stacked together. Thus it is irreducible.

Observation 2: Not all rotations are allowed. Only those that
leaves the lattice invariant are possible candidates. = So we
consider hexagonal lattice for allowing maximal rotation group.
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We want to solve GL equations for 1) and « over these two spaces:

LZ, = {¥ € LP(Qus: C) : (&x) = mo(x)}
[2={a € *(Qus,R?): (a) =0, diva =0, a(Rex) = Rea(x)}

for some 7 € S' € C and ¢ = e2™//6,
Now, consider the linear problem again. Translating the condition
on 1 to theta functions. We see

0(cz) = ne ™G (2)

Remark: it is not clear any such 6 should exist at first sight.
Define for each 6 : C — C,

Ten(0)(2) := ™59 (¢2)

T¢ n is a linear endomorphism on V,, if n is even.
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Since Tgn =1, it can be completely diagonalized.
Moreover, expanding the relation

Ten(0)(2) = €™7°0(£2) = M(2)

in z at the origin, we see that A = &K, where k is the multiplicity
of zeros of 6 at the origin.



Every Ce-equivariant theta function is a product of the following
theta functions (upto scaling):

@ This theta function has a single zero of multiplicty 2 at the
orgin — We define this to be 6, from now on.

@ This theta function has 2 simple zeros located on the left
most 2 vertices of the Wigner-Seitz cell — We define this to
be 6y from now on.

© This theta function has 4 simple zeros. One zero is at the
origin, the other three are on the midpoint of the left most
three edges of the Wigner-Seitz cell — \We define this to be
01 from now on.

@ This theta function has 6 simple zeros on W — W?°, forming
an orbit of Cg.

© This theta function has 6 simple zeros on W*°, forming an
orbit of Cg




Using this theorem, we see that

Lemma

With the definition of 6y, 601, 60> as above. We have that
Te 200 = %00
Teaby = €10
Tenbr = €26,




Vortex Number | Eigenvalue | Eigenvectors

n=2 1 0o
£ b2

n=4 1 93
3 61
S 0001
& 03

n==6 1 03, 03
3 0001
£ 030~
&3 016>
¢t 0063




Vortex Number | Eigenvalue Eigenvectors
n=38 1 03, 0005
3 0301
€2 03, 02, 030,
& 600102
¢ 0303
& 0103
n=10 1 03, 0303
€ 0361, 6103
£2 0302, 0063, 0003
& 0560162
¢t 6362, 63, 62,
£ 006163




Under suitable conditions on parameters, a solution with 2,4,6,8, or
10 vortices per unit cell exists near the normal state. Moreover,
they cannot be regarded as solutions to a finer lattice.




Future Outlook

One can try to solve the equation on

L2, ={v € L2(Qus; C) : ¥(&x) = mb(x)}
[2={a € 2(Qus,R?) : (a) = 0, diva =0, a(Rex) = Rear(x)}

for different &, 7. In fact

Theorem (£ =n = —1)

Suppose that n = p is an odd prime. Then, the space of odd theta
function is ’%1. Moreover, no odd theta function in V), is
quasi-periodic with respect to a finer lattice of the form

1
L, =-7Z+.7
’ a b

where a, b € 7.




Future Outlook

@ Any other &, 7 which works?

@ Rotational symmetry about a different point on the lattice not
the origin?

© Square lattice?
@ Result for general lattice?



Thank you for your attention!



