Multi-vortex Solutions of the Ginzburg-Landau

Li Chen
Joint work with I.M. Sigal and P. Smyrnelis
University of Toronto/ETH Zürich

Feb 9, 2016

GL Equations

The Ginzburg-Landau (GL) equations of superconductivity are

$$
\begin{aligned}
& -\Delta_{A} \psi+\kappa^{2}\left(|\psi|^{2}-1\right) \psi=0 \\
& \text { curl }^{*} \operatorname{curl} A-\operatorname{Im}\left(\bar{\psi} \nabla_{A} \psi\right)=0
\end{aligned}
$$

where

$$
\begin{aligned}
& \psi: \mathbb{R}^{2} \rightarrow \mathbb{C} \\
& A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

and κ is the GL parameter.

Abrikosov Lattice States

Abrikosov lattice states are those whose physical quantities are periodic with respect to some lattice. Key quantities includes
(1) The magnetic field $B=\operatorname{curl} A$
(2) The density of states $n_{s}=|\psi|^{2}$
(3) current density $J=\operatorname{Im}\left(\bar{\psi} \nabla_{A} \psi\right)$.

Abrikosov Lattice States

Abrikosov lattice states are those whose physical quantities are periodic with respect to some lattice. Key quantities includes
(1) The magnetic field $B=\operatorname{curl} A$
(2) The density of states $n_{s}=|\psi|^{2}$
(3) current density $J=\operatorname{Im}\left(\bar{\psi} \nabla_{A} \psi\right)$.

Lattice states have quantized magnetic flux per unit cell of the lattice.

$$
\int_{\Omega} \operatorname{curl} A=2 \pi n \in 2 \pi \mathbb{Z}
$$

Abrikosov Lattice States

Abrikosov lattice states are those whose physical quantities are periodic with respect to some lattice. Key quantities includes
(1) The magnetic field $B=\operatorname{curl} A$
(2) The density of states $n_{s}=|\psi|^{2}$
(3) current density $J=\operatorname{Im}\left(\bar{\psi} \nabla_{A} \psi\right)$.

Lattice states have quantized magnetic flux per unit cell of the lattice.

$$
\int_{\Omega} \operatorname{curl} A=2 \pi n \in 2 \pi \mathbb{Z}
$$

We classify solutions by flux per unit cell.

Solutions

There are two obvious lattice solutions
(1) Normal state: $\psi=0$ and curl $A=: b$ is a constant.
(2) Perfect superconductor solution: $\psi=1$ and $A=0$.

Solutions

There are two obvious lattice solutions
(1) Normal state: $\psi=0$ and curl $A=: b$ is a constant.
(2) Perfect superconductor solution: $\psi=1$ and $A=0$.

We can bifurcate a mixed state from the normal state.

Theorem (I.M. Sigal, T. Tzaneteas (2011))

Under suitable assumptions on parameters, a unique lattice solution (upto symmetry), with 1 flux per unit cell, exists in a neighbourhood of the normal branch.

Remark: asymptotics, in terms of the bifurcation parameter, are also given.

Idea of the Proof: Bifurcation via Lyapunov-Schmidt Procedure

Fix a lattice $\mathcal{L}=\mathbb{Z}+\tau \mathbb{Z}$ for $\operatorname{Im} \tau>0$ and a flux $2 \pi n=\int_{\Omega}$ curl A. The linearized GL equations at a normal state $\left(0, A_{b}\right)$ such that curl $A_{b}=b$ is

$$
\left(\begin{array}{cc}
-\Delta_{A_{b}}-\kappa^{2} & 0 \\
0 & \text { curl }^{*} \text { curl }
\end{array}\right)\binom{\psi^{\prime}}{A^{\prime}}=0
$$

Linear Analysis

The operator curl* curl has an infinite dimensional kernel, namely the ones of the form $\nabla \chi$. By appropriate gauge fixing, we can consider \boldsymbol{A} of the form $a_{b}+\alpha:=\frac{b}{2} J+\alpha$, where
(1) $\langle\alpha\rangle=0$
(2) $\operatorname{div} \alpha=0$
(3) α is periodic with respect to \mathcal{L}.

Linear Analysis

The operator curl* curl has an infinite dimensional kernel, namely the ones of the form $\nabla \chi$. By appropriate gauge fixing, we can consider \boldsymbol{A} of the form $a_{b}+\alpha:=\frac{b}{2} J+\alpha$, where
(1) $\langle\alpha\rangle=0$
(2) $\operatorname{div} \alpha=0$
(3) α is periodic with respect to \mathcal{L}.

One can further show that curl* curl on such space is positive definite.

Linear Analysis

$-\Delta_{a_{b}}$ has discrete spectrum. Moreover, ψ is a ground state if and only if

$$
\theta(z)=e^{\frac{b}{4}\left(|z|^{2}-z^{2}\right)} \psi(z)
$$

is holomorphic.

Linear Analysis

$-\Delta_{a_{b}}$ has discrete spectrum. Moreover, ψ is a ground state if and only if

$$
\theta(z)=e^{\frac{b}{4}\left(|z|^{2}-z^{2}\right)} \psi(z)
$$

is holomorphic. When periodic condition is taken into consideration, the ground state space becomes finite dimensinoal, whose dimension equals n. This associated space of theta functions will be denoted by V_{n}.

Remark: periodicity condition translates to the theta functions as

$$
\begin{aligned}
& \theta(z+1)=\theta(z) \\
& \theta(z+\tau)=e^{-2 \pi i n z} e^{-\pi i n \tau} \theta(z)
\end{aligned}
$$

If $n=1$, then the linear problem has $\mathbb{C}=\mathbb{R}^{2}$ solutions. But global gauge symmetry reduces this to 1 real dimension. So standard bifurcation techniques works to result a solution.

If $n=1$, then the linear problem has $\mathbb{C}=\mathbb{R}^{2}$ solutions. But global gauge symmetry reduces this to 1 real dimension. So standard bifurcation techniques works to result a solution.

But in general, we would like to solve for $n>1$.

If $n=1$, then the linear problem has $\mathbb{C}=\mathbb{R}^{2}$ solutions. But global gauge symmetry reduces this to 1 real dimension. So standard bifurcation techniques works to result a solution.

But in general, we would like to solve for $n>1$.
Methods:
(1) Topological degree theory. Global gauge freedom essentially gives $2 n-1$ real dimensional kernel for the linear operator.

If $n=1$, then the linear problem has $\mathbb{C}=\mathbb{R}^{2}$ solutions. But global gauge symmetry reduces this to 1 real dimension. So standard bifurcation techniques works to result a solution.

But in general, we would like to solve for $n>1$.
Methods:
(1) Topological degree theory. Global gauge freedom essentially gives $2 n-1$ real dimensional kernel for the linear operator.
(2) Use additional symmetries to reduce the dimension to of V_{n} to 1 .

The Immediate Problem

The simplest symmetry would to require the physical quantities be periodic with respect to a finer lattice. But this gives no new results as the solution is in some sense reducible.

A Solution

Observation 1: If a function has 2 zeros yet is invariant (or upto a nonzero factor) under rotation by $2 \pi / 3$. The two zeros should be stacked together. Thus it is irreducible.

A Solution

Observation 1: If a function has 2 zeros yet is invariant (or upto a nonzero factor) under rotation by $2 \pi / 3$. The two zeros should be stacked together. Thus it is irreducible.
Observation 2: Not all rotations are allowed. Only those that leaves the lattice invariant are possible candidates. \Rightarrow So we consider hexagonal lattice for allowing maximal rotation group.

We want to solve GL equations for ψ and α over these two spaces:

$$
\begin{aligned}
L_{\xi, \eta}^{2} & =\left\{\psi \in L^{2}\left(\Omega_{w s} ; \mathbb{C}\right): \psi(\xi x)=\eta \psi(x)\right\} \\
\vec{L}_{\xi}^{2} & =\left\{\alpha \in L^{2}\left(\Omega_{w s}, \mathbb{R}^{2}\right):\langle\alpha\rangle=0, \operatorname{div} \alpha=0, \alpha\left(R_{\xi} x\right)=R_{\xi} \alpha(x)\right\}
\end{aligned}
$$

for some $\eta \in S^{1} \subset \mathbb{C}$ and $\xi=e^{2 \pi i / 6}$.

We want to solve GL equations for ψ and α over these two spaces:

$$
\begin{aligned}
L_{\xi, \eta}^{2} & =\left\{\psi \in L^{2}\left(\Omega_{W S} ; \mathbb{C}\right): \psi(\xi x)=\eta \psi(x)\right\} \\
\vec{L}_{\xi}^{2} & =\left\{\alpha \in L^{2}\left(\Omega_{W S}, \mathbb{R}^{2}\right):\langle\alpha\rangle=0, \operatorname{div} \alpha=0, \alpha\left(R_{\xi} x\right)=R_{\xi} \alpha(x)\right\}
\end{aligned}
$$

for some $\eta \in S^{1} \subset \mathbb{C}$ and $\xi=e^{2 \pi i / 6}$.
Now, consider the linear problem again. Translating the condition on ψ to theta functions. We see

$$
\theta(\xi z)=\eta e^{-i \pi n \xi z^{2}} \theta(z)
$$

We want to solve GL equations for ψ and α over these two spaces:

$$
\begin{aligned}
L_{\xi, \eta}^{2} & =\left\{\psi \in L^{2}\left(\Omega_{W S} ; \mathbb{C}\right): \psi(\xi x)=\eta \psi(x)\right\} \\
\vec{L}_{\xi}^{2} & =\left\{\alpha \in L^{2}\left(\Omega_{w s}, \mathbb{R}^{2}\right):\langle\alpha\rangle=0, \operatorname{div} \alpha=0, \alpha\left(R_{\xi} x\right)=R_{\xi} \alpha(x)\right\}
\end{aligned}
$$

for some $\eta \in S^{1} \subset \mathbb{C}$ and $\xi=e^{2 \pi i / 6}$.
Now, consider the linear problem again. Translating the condition on ψ to theta functions. We see

$$
\theta(\xi z)=\eta e^{-i \pi n \xi z^{2}} \theta(z)
$$

Remark: it is not clear any such θ should exist at first sight.

We want to solve GL equations for ψ and α over these two spaces:

$$
\begin{aligned}
L_{\xi, \eta}^{2} & =\left\{\psi \in L^{2}\left(\Omega_{W S} ; \mathbb{C}\right): \psi(\xi x)=\eta \psi(x)\right\} \\
\vec{L}_{\xi}^{2} & =\left\{\alpha \in L^{2}\left(\Omega_{w s}, \mathbb{R}^{2}\right):\langle\alpha\rangle=0, \operatorname{div} \alpha=0, \alpha\left(R_{\xi} x\right)=R_{\xi} \alpha(x)\right\}
\end{aligned}
$$

for some $\eta \in S^{1} \subset \mathbb{C}$ and $\xi=e^{2 \pi i / 6}$.
Now, consider the linear problem again. Translating the condition on ψ to theta functions. We see

$$
\theta(\xi z)=\eta e^{-i \pi n \xi z^{2}} \theta(z)
$$

Remark: it is not clear any such θ should exist at first sight. Define for each $\theta: \mathbb{C} \rightarrow \mathbb{C}$,

$$
T_{\xi, n}(\theta)(z):=e^{i \pi n \xi z^{2}} \theta(\xi z)
$$

Lemma

$T_{\xi, n}$ is a linear endomorphism on V_{n} if n is even.

Since $T_{\xi, n}^{6}=1$, it can be completely diagonalized.

Since $T_{\xi, n}^{6}=1$, it can be completely diagonalized. Moreover, expanding the relation

$$
T_{\xi, n}(\theta)(z)=e^{i \pi n \xi z^{2}} \theta(\xi z)=\lambda \theta(z)
$$

in z at the origin, we see that $\lambda=\xi^{k}$, where k is the multiplicity of zeros of θ at the origin.

Theorem

Every C_{6}-equivariant theta function is a product of the following theta functions (upto scaling):
(1) This theta function has a single zero of multiplicty 2 at the orgin - We define this to be θ_{2} from now on.
(2) This theta function has 2 simple zeros located on the left most 2 vertices of the Wigner-Seitz cell - We define this to be θ_{0} from now on.
(3) This theta function has 4 simple zeros. One zero is at the origin, the other three are on the midpoint of the left most three edges of the Wigner-Seitz cell - We define this to be θ_{1} from now on.
(9) This theta function has 6 simple zeros on $W-W^{0}$, forming an orbit of C_{6}.
(5) This theta function has 6 simple zeros on W^{0}, forming an orbit of C_{6}

Using this theorem, we see that

Lemma

With the definition of $\theta_{0}, \theta_{1}, \theta_{2}$ as above. We have that

$$
\begin{aligned}
& T_{\xi, 2} \theta_{0}=\xi^{0} \theta_{0} \\
& T_{\xi, 4} \theta_{1}=\xi^{1} \theta_{1} \\
& T_{\xi, 2} \theta_{2}=\xi^{2} \theta_{2}
\end{aligned}
$$

Vortex Number	Eigenvalue	Eigenvectors
$n=2$	1	θ_{0}
	ξ^{2}	θ_{2}
$n=4$	1	θ_{0}^{2}
	ξ	θ_{1}
	ξ^{2}	$\theta_{0} \theta_{1}$
	ξ^{4}	θ_{2}^{2}
$n=6$	1	$\theta_{0}^{3}, \theta_{2}^{3}$
	ξ	$\theta_{0} \theta_{1}$
	ξ^{2}	$\theta_{0}^{2} \theta_{2}$
	ξ^{3}	$\theta_{1} \theta_{2}$
	ξ^{4}	$\theta_{0} \theta_{2}^{2}$

Vortex Number	Eigenvalue	Eigenvectors
$n=8$	1	$\theta_{0}^{4}, \theta_{0} \theta_{2}^{3}$
	ξ	$\theta_{0}^{2} \theta_{1}$
	ξ^{2}	$\theta_{2}^{4}, \theta_{1}^{2}, \theta_{0}^{3} \theta_{2}$
	ξ^{3}	$\theta_{0} \theta_{1} \theta_{2}$
	ξ^{4}	$\theta_{0}^{2} \theta_{2}^{2}$
	ξ^{5}	$\theta_{1} \theta_{2}^{2}$
$n=10$	1	$\theta_{0}^{5}, \theta_{0}^{2} \theta_{2}^{3}$
	ξ	$\theta_{0}^{3} \theta_{1}, \theta_{1} \theta_{2}^{3}$
	ξ^{2}	$\theta_{0}^{4} \theta_{2}, \theta_{0} \theta_{2}^{4}, \theta_{0} \theta_{1}^{2}$
	ξ^{3}	$\theta_{0}^{2} \theta_{1} \theta_{2}$
	ξ^{4}	$\theta_{0}^{3} \theta_{2}^{2}, \theta_{2}^{5}, \theta_{1}^{2} \theta_{2}$
	ξ^{5}	$\theta_{0} \theta_{1} \theta_{2}^{2}$

Theorem

Under suitable conditions on parameters, a solution with 2,4,6,8, or 10 vortices per unit cell exists near the normal state. Moreover, they cannot be regarded as solutions to a finer lattice.

Future Outlook

One can try to solve the equation on

$$
\begin{aligned}
L_{\xi, \eta}^{2} & =\left\{\psi \in L^{2}\left(\Omega_{W S} ; \mathbb{C}\right): \psi(\xi x)=\eta \psi(x)\right\} \\
\vec{L}_{\xi}^{2} & =\left\{\alpha \in L^{2}\left(\Omega_{W S}, \mathbb{R}^{2}\right):\langle\alpha\rangle=0, \operatorname{div} \alpha=0, \alpha\left(R_{\xi} x\right)=R_{\xi} \alpha(x)\right\}
\end{aligned}
$$

for different ξ, η. In fact

Theorem ($\xi=\eta=-1$)

Suppose that $n=p$ is an odd prime. Then, the space of odd theta function is $\frac{p-1}{2}$. Moreover, no odd theta function in V_{p} is quasi-periodic with respect to a finer lattice of the form

$$
L_{a, b}:=\frac{1}{a} \mathbb{Z}+\frac{\tau}{b} \mathbb{Z}
$$

where $a, b \in \mathbb{Z}$.

Future Outlook

(1) Any other ξ, η which works?
(2) Rotational symmetry about a different point on the lattice not the origin?
(3) Square lattice?
(9) Result for general lattice?

Thank you for your attention!

