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1. Time reversal symmetries and “Quaternionic” structures



Topological Quantum Systems with odd TRS's
Let B a topological space, (“Brillouin zone”). Assume that:
e B s compact, Hausdorff and path-connected;

e B admits a CW-complex structure.

DEFINITION (Topological Quantum System (TQS))

Let H be a separable Hilbert space and X(H) the algebra of
compact operators. A TQS is a self-adjoint map

B > k — H(k)=H(k)" € X(H)
continuous with respect fo the norm-topology.

I The spectrum o(H(k)) = {Ej(k) | j€ Z C Z} C R, is a sequence of
eigenvalues ordered according to
V& The maps k — Ej(K) are continuous (energy bands) ...
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Topological Quantum Systems with odd TRS's

.. hamely a band spectrum

H(k) (k) = Ej(k) vy(k) , keB

5™ Usually an energy gap separates the filled valence bands from the empty
conduction bands. The Fermi level Er characterizes the gap.



Topological Quantum Systems with odd TRS's

A homeomorphism T : B — B is called involution if 72 = Idp.
The pair (B, T) is called an involutive space. Each space B
admits (at least) the trivial involution 7y, := Idp.

DEFINITION (TQS with time-reversal symmetry)

Let (B, 7) be an involutive space, H a separable Hilbert space
endowed with a complex conjugation C. A TQS B > k — H(k)
has a time-reversal symmetry (TRS) of parity n € {£1} if there
is a continuous unitary-valued map k — U(K) such that

U(k) H(k) U(k)* = C H(r(k)) C,  C U(r(k)) C = nU(k)* .

A TQS with an odd TRS (ie. n = —1) is called of class All.
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The Serre-Swan construction
{E; (), -

e An isolated family of energy bands is any (finite) collection
., Ej, (")} of energy bands such that

r}pei]r; dist (SL_Jl{Ejs(k)} ) U

{E,-(k)}) = Cy >0.
JETN Lty esim}
This is usually called gap condition

e An isolated family is described by the Fermi projection

Z | (K)) (g (k)] -

This is a continuous projection-valued map

[m]
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The Serre-Swan construction
5" For each k € B

Hi = Ran Pe(k) C H
is a subspace of H of fixed dimension m.
IE" The collection
EF = |_| Hi
KEB
is a topological space (said total space) and the map

Tm: & — B
defined by w(k,v) = k is continuous (and open).

This is a complex vector bundle (of rank m) called Bloch-bundle.

[m]
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The Serre-Swan construction

IZ" An odd TRS induces a “Quaternionic” structure on the
Bloch-bundle.

DEFINITION (Atiyah, 1966 - Dupont, 1969)

Let (B, T) be an involutive space and & — B a complex vector
bundle. Let © : & — & an homeomorphism such that

O : &k — Elrk is anti-linear .

[R] - The pair (&,0©) is a “Real”-bundle over (B, T) if

02 : &l I &k VkeB;

[Q] - The pair (&,©) is a “Quaternionic”-bundle over (B, ) if

02 : &l = &k VkeB.




The classification problem

DEFINITION (Topological phases)

Let B 5 k — H(k) be an odd TR-symmetric TQS with an
isolated family of m energy bands and associated “Quaternionic”
Bloch bundle £ — B. The topological phase of the system is
specified by

(€. ©)] € Vec(B,7).

Main Question:

How fo classify Vec (BB, T) at least for low-dimensional B?




The classification problem

Known results for dim(B) < 3
o VecT(B) & H2(B,Z)

o
o Vec(B,7) ~

(Peterson, 1959)
Hz, (B, 7Z(1)) (Kahn, 1987 - D. & Gomi, 2014)
| CAZ || TRS | Category | Z |
A 0 complex Vecd(BB)
AT + ‘Real” VecR (B, 7)
AII — | “Quaternionic” | Vecg (B, T)




2. The role of the (involutive) base space



Electrons in a periodic environment

e Periodic quantum systems (e.g. absence of disorder):

- RYtranslations = free (Dirac) fermions;
- Z9-translations = crystal (Bloch) fermions.

e The Bloch-Floquet (or Fourier) theory exploits the invariance
under tfranslations of a periodic structure to describe the
state of the system in terms of the quasi-momentum Kk on
the Brillouin zone B.

e Complex conjugation (TRS) endows B with an involution .

e Examples are:
- Gapped electronic systems,
- BdG superconductors,
- Photonic crystals (M. Lein talk).
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Continuous case B = §'¢

9 S1.d = ($d791,d)
(+k0,+k1,.. Jrkd) (—I—ko, k1,...,*kd)




Periodic case B = T%¢90

Td = 9171 X ... X 0171

]
gt x ... x g gt x ... x g

’]I‘O-dvo = $1’1 X ... X 8171 - (Td77—d)

d - fimes
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Orbit space




Topological states for Bloch electrons

| [d=1]d=2]d=8] d=4 | |

Vec'($17) 0 Zs Zs Z Free

VecZ(T090) 0 Zo 74 ZX ® 7 || Periodic

I The first proof (for the case d = 1,2) is due to Fu, Kane and Mele
(2005 - 2007). They introduced the notion of Fu-Kane-Mele indices
(values of a Pfaffian on the fixed points) and the distinction between
strong and weak invariants.

¥ Computed by Kitaev (2009) for all d by K-theory (stable range).
I “Handmade” frame construction for the case T%?° by Graf and Porta
(2013) and for the case T%*° by Fiorenza, Monaco and Panati (2016).

IS" Kennedy and Zirnbauer (2015) by the calculation of the equivariant
homotopy (very general but hard to compute).

¥ D, and Gomi (2015) by the introduction of the FKMM-invariant (a
characteristic class) and the computation of the equivariant cohomology

(very general and not so hard to compute).
[m] = = =
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Why more general involutive spaces?

I B can be interpreted as the space of control parameters for a quantum
system adiabatically perturbed. In this sense (B, ) can be very
general. In particular the fixed-point set B™ could be empty (free
action) or a sub-manifold of whatever co-dimension (and not necessary a
discrete set of points).

IS Many of the previous approaches just fail when B” is not a discrete set:
€. g. which is the meaning of the Fu-Kane-Mele indices when B" is
not a discrete set?

I5" Recently Gat and Robbins (arXiv:1511.08994) considered the cases
B = $°2 (rigid rotor) and B = T"'° (phase space of slow dynamic of
a 1D periodic particle). In the first case B™ = () and in the second
B™ =S$'US". The classification is obtained by a “handmade” frame
construction:

2Z.+1 m odd

, Vec(T""%) ~ 27 .
27 m even o )

Vec5(5%°%) ~ {

IS" 11 pages for 2 cases ... but there are much more Il
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More general involutive spheres

SPa .= (SPHI=1 0, ) with Op q defined by

(Ko Kiy - Kot Koo koiget) 25 (KovKiy- o ko1, Koy —Korq—1)
p+qg<4 g=0|g=1|g=2| g=8 | g=4
VecZ1(8%9) o ? ? 27 + 1 ?
VecZ(5%:9) o ? ? 27 ?
VecZ($'9) 0 0 Zs Zs
VecZ($29) 0 ? ?
VecZ($%:9) 0 ?
VecZ)($*9) 0
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More general involutive spheres

SPa .= (SPHI=1 0, ) with Op q defined by

0
(Kos Kty ko1, Koy - Kprg1) = (Koy Kty oo ko1, —Kpy -y —Kpyg—1)
p+qg<4 | g=0]qg=1|g=2| g=38 | g=4
VecZ1(8%9) o 0 0 27 + 1 o
VecZ(5%:9) o 0 0 27 0
VecZ($'9) 0 0 Zs Zs
VecZ($29) 0 27 0
VecZ($%:9) 0 0
VecZ($49) 0
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More general involutive tori (fixed-point case)

TaPC = §20 % x 8% x M x L x g x §%2x . x g%
a—times b—times c—times
a+b<3,¢c=01 a=0 a=1 a=2 | a=3
VecZ™(T#0:0) o 0 0 0
VecZ™(T#'-0) 0 27 ?
VecZ(T#2:9) Zs ?
VecZ(T#3:9) Z3
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More general involutive tori (fixed-point case)

T = 620 5 %8P0 x §MT kL x 8T x 892 x . x 8%
a—times b—times c—times
a+b<3,¢c=01 a=0 a=1 a=2 | a=3
VecZ™(T#0:0) o 0 0 0
VecZ™(T#'-0) 0 27 (27)?
VecZ(T#2:9) Zy Zo @ (2Z)
VecZ(T#3:9) Z3
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More general involutive tori (free-involution case)
PROPOSITION (D. - Gomi, 2016)

Ta‘b,c ~ Ta+cf1.b,1

a+b<2 c=1 a=>0 a=1 a=2
VecB (T#01) 0 ? ?
VecB (T#"") ? ?
VecB (T#21) ?
For all m e IN odd or even!




More general involutive tori (free-involution case)
PROPOSITION (D. - Gomi, 2016)

Ta‘b,c ~ Ta+cf1.b,1

at+b<2,c=1 EEN a=1 EE
VecB (T#01) 0 Zs> 73
VecB (T#"") 27 Zs @ (27,
VecB (T#21) (27,)?
For all m e IN odd or even!




3. In the search of a classifying object



Relative equivariant cohomology
In [D. - Gomi, 2016] we classified
VecZ"(T%40)  and
FKMM-invariant.

Vecd(s"91) . d<4

by a characteristic class with values in H%z (B|B™,Z(1)): the

o 0: r
Hy, (IBlTZ,Z(1)) = H(BIB",Z(1)) = H3, (]Bl,ZZ(1)) — H, (IBlTZ, Z(1))
[B7,8""]z, Picr (1B, 7)

PiC]R(IBT)
IS™ Our previous results only apply to the case

B"™ = {finite collection of points}.

[m]

To consider more general involutive spaces we need more generality !
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The (generalized) FKMM-invariant

THEOREM (D. - Gomi, 2016)
Given (B, T) let
Picr (B|B",7) = {[(Z,9)] | £ € Picr(B,7), s:ZL|s- — U(1)}.

The choice of s is canonical and the group structure is given by the tensor
product. Then
Picg (B|B”,7) ~ H*(B|B",Z(1)) .

There is a group hormomorphism

K : Vecq'(B,7) — H*(B|B,Z(1))

alled the FKMM-invariant.

I If (£,0) € VecH'(B, 1) then (det&, det®) € Picg (B, T),
IE" Jt exists a canonical Sg : BT — det&'|~
¥ (deté&, S¢) € Picr (B|B7, 7)

Kk(&,0) = R(det&, Ssg) .




4, FKMM vs. Fu-Kane-Mele



K 1 Vecd'(B,7) — H*(B|B7,Z(1))

Isomorphic Q-bundles have the same FKMM-invariant,

If (&,0) is Q-trivial then k(&,0) =0,

K IS natural under the pullback induced by equivariant maps;
k(& @ 62,01 @ 02) = k(&1,01) + Kk(2,02),

K Is the image of a universal class bupiy,

When B™

{finite collection of points}
k(&,0) ~ Fu-Kane-Mele invariants ;

When BT = @

K(&,0) ~ C1R(detc§’7 det®) ;
If dim(B) < 3 the map k is injective;
over (low dimensional) 879 and T#?° the map « is bijective;
K IS not bijective in general, neither in low dimension ... damnll;
When B™ = @ and Pico(B,7) = @ then Pico(B,7) is a
torsor over Picr (B, 7). Hence

Pico(B,7) ~ Picg(B,7) ~ H*(B|B",Z(1)).
] [ =
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Thank you for your attention
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