Topological nature of the Fu-Kane-Mele invariants

Giuseppe De Nittis

(Pontificia Universidad Católica)

Mathematical Challenges in Quantum Mechanics

Bressanone, Italy • 08 - 13 February, 2016

In collaboration with:

K. Gomi (Shinshu Univ.)

Outline

1. Time reversal symmetries and "Quaternionic" structures

2. The role of the (involutive) base space

3. In the search of a classifying object

4. FKMM vs. Fu-Kane-Mele

Topological Quantum Systems with odd TRS's

Let **B** a topological space, ("Brillouin zone"). Assume that:

- ullet ${\mathbb B}$ is compact, Hausdorff and path-connected;
- ${\mathbb B}$ admits a CW-complex structure.

DEFINITION (Topological Quantum System (TQS))

Let $\mathcal H$ be a separable Hilbert space and $\mathcal K(\mathcal H)$ the algebra of compact operators. A TQS is a self-adjoint map

$$\mathbb{B} \ni k \longmapsto H(k) = H(k)^* \in \mathfrak{K}(\mathcal{H})$$

continuous with respect to the norm-topology.

The spectrum $\sigma(H(k)) = \{E_j(k) \mid j \in \mathcal{I} \subseteq \mathbb{Z}\} \subset \mathbb{R}$, is a sequence of eigenvalues ordered according to

$$\dots \underline{E}_{-2}(k) \leqslant \underline{E}_{-1}(k) < 0 \leqslant \underline{E}_{1}(k) \leqslant \underline{E}_{2}(k) \leqslant \dots$$

Topological Quantum Systems with odd TRS's

... namely a band spectrum

$$H(k) \psi_j(k) = E_j(k) \psi_j(k), \qquad k \in \mathbb{B}$$

Usually an energy gap separates the filled valence bands from the empty conduction bands. The $Fermi\ level\ E_F$ characterizes the gap.

Topological Quantum Systems with odd TRS's

A homeomorphism $\tau: \mathbb{B} \to \mathbb{B}$ is called **involution** if $\tau^2 = \operatorname{Id}_{\mathbb{B}}$. The pair (\mathbb{B}, τ) is called an **involutive space**. Each space \mathbb{B} admits (at least) the **trivial involution** $\tau_{\operatorname{triv}} := \operatorname{Id}_{\mathbb{B}}$.

DEFINITION (TQS with time-reversal symmetry**)**

Let (\mathbb{B}, τ) be an involutive space, \mathcal{H} a separable Hilbert space endowed with a **complex conjugation** C. A TQS $\mathbb{B} \ni k \mapsto H(k)$ has a **time-reversal symmetry** (TRS) of parity $\eta \in \{\pm 1\}$ if there is a continuous unitary-valued map $k \mapsto U(k)$ such that

$$U(k) H(k) U(k)^* = C H(\tau(k)) C$$
, $C U(\tau(k)) C = \eta U(k)^*$.

A TQS with an **odd** TRS (i.e. $\eta = -1$) is called of class **All**.

The Serre-Swan construction

• An **isolated family** of energy bands is any (finite) collection $\{E_{j_1}(\cdot),\ldots,E_{j_m}(\cdot)\}$ of energy bands such that

$$\min_{k\in\mathbb{B}} \operatorname{dist}\left(\bigcup_{s=1}^{m} \{E_{j_s}(k)\}, \bigcup_{j\in\mathcal{I}\setminus\{j_1,\ldots,j_m\}} \{E_j(k)\}\right) = C_g > 0.$$

This is usually called gap condition.

An isolated family is described by the Fermi projection

$$P_{\mathcal{F}}(k) := \sum_{n=1}^{m} |\psi_{j_s}(k)\rangle\langle\psi_{j_s}(k)|.$$

This is a continuous projection-valued map

$$\mathbb{B} \ni k \longmapsto P_F(k) \in \mathcal{K}(\mathcal{H}).$$

The Serre-Swan construction

For each $k \in \mathbb{B}$

$$\mathcal{H}_{k} := \operatorname{Ran} P_{F}(k) \subset \mathcal{H}$$

is a subspace of \mathcal{H} of **fixed** dimension m.

The collection

$$\mathcal{E}_{F} := \bigsqcup_{k \in \mathbb{B}} \mathcal{H}_{k}$$

is a topological space (said total space) and the map

$$\pi: \mathcal{E}_{F} \longrightarrow \mathbb{B}$$

defined by $\pi(k, v) = k$ is continuous (and open).

This is a **complex** vector bundle (of rank m) called **Bloch-bundle**.

The Serre-Swan construction

An **odd** TRS induces a "Quaternionic" structure on the Bloch-bundle.

DEFINITION (Atiyah, 1966 - Dupont, 1969)

Let (\mathbb{B}, τ) be an involutive space and $\mathscr{E} \to \mathbb{B}$ a **complex** vector bundle. Let $\Theta : \mathscr{E} \to \mathscr{E}$ an **homeomorphism** such that

$$\Theta: \mathscr{E}|_{k} \longrightarrow \mathscr{E}|_{\tau(k)}$$
 is **anti**-linear.

 $[\mathcal{R}]$ - The pair (\mathscr{E},Θ) is a "Real"-bundle over (\mathbb{B}, au) if

$$\Theta^2: \mathscr{E}|_k \xrightarrow{+1} \mathscr{E}|_k \qquad \forall \ k \in \mathbb{B} ;$$

 $[\mathcal{Q}]$ - The pair (\mathscr{E},Θ) is a "Quaternionic"-bundle over (\mathbb{B},τ) if

$$\Theta^2 : \mathscr{E}|_k \xrightarrow{-1} \mathscr{E}|_k \qquad \forall \ k \in \mathbb{B} .$$

The classification problem

DEFINITION (Topological phases)

Let $\mathbb{B} \ni k \longmapsto H(k)$ be an **odd TR-symmetric** TQS with an isolated family of **m** energy bands and associated "Quaternionic" Bloch bundle $\mathcal{E}_F \longrightarrow \mathbb{B}$. The **topological phase** of the system is specified by

$$[(\mathcal{E}_{F},\Theta)] \in \operatorname{Vec}_{\mathcal{Q}}^{m}(\mathbb{B},\tau).$$

###

Main Question:

How to classify $\operatorname{Vec}_{\mathcal{O}}^{m}(\mathbb{B},\tau)$ at least for **low-dimensional** \mathbb{B} ?

The classification problem

Known results for $\dim(\mathbb{B}) \leqslant 3$

•
$$\operatorname{Vec}_{\mathbb{C}}^m(\mathbb{B}) \stackrel{c_1}{\simeq} H^2(\mathbb{B}, \mathbb{Z})$$

(Peterson, 1959)

•
$$\operatorname{Vec}_{\mathcal{R}}^{m}(\mathbb{B}, \tau) \overset{c_{1}^{\mathcal{R}}}{\simeq} H_{\mathbb{Z}_{2}}^{2}(\mathbb{B}, \mathbb{Z}(1))$$

(Kahn, 1987 - D. & Gomi, 2014)

CAZ	TRS	Category	VB
А	0	complex	$\operatorname{Vec}^m_{\mathbb{C}}(\mathbb{B})$
AI	+	"Real"	$\operatorname{Vec}^m_{\mathcal{R}}(\mathbb{B}, au)$
AII	_	"Quaternionic"	$\operatorname{Vec}_{\mathcal{Q}}^m(\mathbb{B}, au)$

Outline

1. Time reversal symmetries and "Quaternionic" structures

2. The role of the (involutive) base space

3. In the search of a classifying object

4. FKMM vs. Fu-Kane-Mele

Electrons in a periodic environment

- Periodic quantum systems (e.g. absence of disorder):
 - \mathbb{R}^d -translations \Rightarrow **free** (Dirac) fermions;
 - \mathbb{Z}^d -translations \Rightarrow **crystal** (Bloch) fermions.
- The Bloch-Floquet (or Fourier) theory exploits the invariance under translations of a periodic structure to describe the state of the system in terms of the quasi-momentum k on the Brillouin zone B.
- ullet Complex conjugation (TRS) endows ${\mathbb B}$ with an involution au.
- Examples are:
 - Gapped electronic systems,
 - BdG superconductors,
 - Photonic crystals (M. Lein talk).

Continuous case $\mathbb{B} \equiv \mathbb{S}^{1,d}$

$$\mathbb{S}^{d} \xrightarrow{\theta_{1,d}} \mathbb{S}^{d}$$

$$(+k_{0}, +k_{1}, \dots, +k_{d}) \xrightarrow{\theta_{1,d}} (+k_{0}, -k_{1}, \dots, -k_{d})$$

$$\mathbb{S}^{1,d} := (\mathbb{S}^{d}, \theta_{1,d})$$

Periodic case $\mathbb{B} \equiv \mathbb{T}^{0,d,0}$

$$\mathbb{S}^{1,1} \times \ldots \times \mathbb{S}^{1,1} \xrightarrow{\mathcal{T}_d := \theta_{1,1} \times \ldots \times \theta_{1,1}} \mathbb{S}^{1,1} \times \ldots \times \mathbb{S}^{1,1}$$

$$\mathbb{T}^{0,d,0} := \underbrace{\mathbb{S}^{1,1} \times \ldots \times \mathbb{S}^{1,1}}_{d \text{-times}} = (\mathbb{T}^d, \tau_d)$$

Topological states for Bloch electrons

	d = 1	d = 2	d = 3	d = 4	
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{1,d})$	0	\mathbb{Z}_2	\mathbb{Z}_2	${\mathbb Z}$	Free
$\operatorname{Vec}^{2m}_{\mathcal{Q}}(\mathbb{T}^{0,d,0})$	0	\mathbb{Z}_2	\mathbb{Z}_2^4	$\mathbb{Z}_2^{10}\oplus\mathbb{Z}$	Periodic

- The first proof (for the case d=1,2) is due to **Fu**, **Kane** and **Mele** (2005 2007). They introduced the notion of **Fu-Kane-Mele indices** (values of a Pfaffian on the fixed points) and the distinction between **strong** and **weak** invariants.
- © Computed by **Kitaev (2009)** for all **d** by **K-theory** (stable range).
- "Handmade" frame construction for the case $\mathbb{T}^{0,2,0}$ by Graf and Porta (2013) and for the case $\mathbb{T}^{0,3,0}$ by Fiorenza, Monaco and Panati (2016).
- Kennedy and Zirnbauer (2015) by the calculation of the equivariant homotopy (very general but hard to compute).
- D. and Gomi (2015) by the introduction of the FKMM-invariant (a characteristic class) and the computation of the equivariant cohomology (very general and not so hard to compute).

Why more general involutive spaces?

- \mathbb{B} can be interpreted as the space of **control parameters** for a quantum system **adiabatically perturbed**. In this sense (\mathbb{B}, τ) can be very general. In particular the **fixed-point set** \mathbb{B}^{τ} could be empty (free action) or a sub-manifold of whatever co-dimension (and not necessary a discrete set of points).
- Many of the previous approaches just fail when \mathbf{B}^{τ} is not a discrete set: e. g. which is the meaning of the Fu-Kane-Mele indices when \mathbf{B}^{τ} is not a discrete set?
- Recently **Gat** and **Robbins** (arXiv:1511.08994) considered the cases $\mathbb{B} = \mathbb{S}^{0,3}$ (rigid rotor) and $\mathbb{B} = \mathbb{T}^{1,1,0}$ (phase space of slow dynamic of a 1D periodic particle). In the first case $\mathbb{B}^{\tau} = \emptyset$ and in the second $\mathbb{B}^{\tau} = \mathbb{S}^1 \sqcup \mathbb{S}^1$. The classification is obtained by a "handmade" frame construction:

$$\operatorname{Vec}_{\mathcal{Q}}^m(\mathbb{S}^{0,3}) \simeq \left\{ egin{array}{ll} 2\mathbb{Z} + 1 & m & odd \\ 2\mathbb{Z} & m & even \end{array} \right., \qquad \operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{1,1,0}) \simeq 2\mathbb{Z} \ .$$

11 pages for 2 cases ... but there are much more!!

More general involutive spheres

$$\mathbb{S}^{p,q} := (\mathbb{S}^{p+q-1}, \theta_{p,q})$$
 with $\theta_{p,q}$ defined by
$$(k_0, k_1, \dots, k_{p-1}, k_p, \dots, k_{p+q-1}) \stackrel{\theta_{p,q}}{\mapsto} (k_0, k_1, \dots, k_{p-1}, -k_p, \dots, -k_{p+q-1})$$

$p+q\leqslant 4$	q=0	<i>q</i> = 1	q = 2	q=3	q=4
$\mathrm{Vec}_{\mathcal{Q}}^{2m+1}(\mathbb{S}^{0,q})$	Ø	?	?	2Z + 1	?
$\mathrm{Vec}^{2m}_{\mathcal{Q}}(\mathbb{S}^{0,q})$	Ø	?	?	2ℤ	?
$\mathrm{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{1,q})$	0	0	\mathbb{Z}_2	\mathbb{Z}_2	
$\operatorname{Vec}^{2m}_{\mathcal{Q}}(\mathbb{S}^{2,q})$	0	?	?		
$\operatorname{Vec}^{2m}_{\mathcal{Q}}(\mathbb{S}^{3,q})$	0	?			
$\mathrm{Vec}^{2m}_{\mathcal{Q}}(\mathbb{S}^{4,q})$	0				

More general involutive spheres

$$\mathbb{S}^{p,q} := (\mathbb{S}^{p+q-1}, \theta_{p,q}) \text{ with } \theta_{p,q} \text{ defined by}$$

$$(k_0, k_1, \dots, k_{p-1}, k_p, \dots, k_{p+q-1}) \stackrel{\theta_{p,q}}{\mapsto} (k_0, k_1, \dots, k_{p-1}, -k_p, \dots, -k_{p+q-1})$$

$p+q\leqslant 4$	q = 0	<i>q</i> = 1	q = 2	q = 3	q=4
$\mathrm{Vec}_{\mathcal{Q}}^{2m+1}(\mathbb{S}^{0,q})$	Ø	0	0	2Z + 1	Ø
$\mathrm{Vec}^{2m}_\mathcal{Q}(\mathbb{S}^{0,q})$	Ø	0	0	2ℤ	0
$\mathrm{Vec}^{2m}_{\mathcal{Q}}(\mathbb{S}^{1,q})$	0	0	\mathbb{Z}_2	\mathbb{Z}_2	
$\operatorname{Vec}^{2m}_{\mathcal{Q}}(\mathbb{S}^{2,q})$	0	2ℤ	0		
$\operatorname{Vec}^{2m}_{\mathcal{Q}}(\mathbb{S}^{3,q})$	0	0			
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{4,q})$	0				

More general involutive tori (fixed-point case)

$$\mathbb{T}^{a,b,c} \; := \; \underbrace{\mathbb{S}^{2,0} \times \ldots \times \mathbb{S}^{2,0}}_{a-\textit{times}} \; \times \; \underbrace{\mathbb{S}^{1,1} \times \ldots \times \mathbb{S}^{1,1}}_{b-\textit{times}} \; \times \; \underbrace{\mathbb{S}^{0,2} \times \ldots \times \mathbb{S}^{0,2}}_{c-\textit{times}}$$

$a+b\leqslant 3,\ c=0$	a = 0	a = 1	a = 2	a = 3
$\mathrm{Vec}^{2m}_\mathcal{Q}(\mathbb{T}^{a,0,0})$	Ø	0	0	0
$\mathrm{Vec}^{2m}_\mathcal{Q}(\mathbb{T}^{a,1,0})$	0	2ℤ	?	
$\mathrm{Vec}^{2m}_\mathcal{Q}(\mathbb{T}^{a,2,0})$	\mathbb{Z}_2	?		
$\mathrm{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{a,3,0})$	\mathbb{Z}_2^4			

More general involutive tori (fixed-point case)

$$\mathbb{T}^{a,b,c} \; := \; \underbrace{\mathbb{S}^{2,0} \times \ldots \times \mathbb{S}^{2,0}}_{a-\textit{times}} \; \times \; \underbrace{\mathbb{S}^{1,1} \times \ldots \times \mathbb{S}^{1,1}}_{b-\textit{times}} \; \times \; \underbrace{\mathbb{S}^{0,2} \times \ldots \times \mathbb{S}^{0,2}}_{c-\textit{times}}$$

$a+b\leqslant 3,\ c=0$	a = 0	a = 1	a = 2	a = 3
$\mathrm{Vec}^{2m}_\mathcal{Q}(\mathbb{T}^{a,0,0})$	Ø	0	0	0
$\mathrm{Vec}^{2m}_\mathcal{Q}(\mathbb{T}^{a,1,0})$	0	2ℤ	(2Z) ²	
$\mathrm{Vec}^{2m}_\mathcal{Q}(\mathbb{T}^{a,2,0})$	\mathbb{Z}_2	$\mathbb{Z}_2 \oplus (2\mathbb{Z})^2$		
$\mathrm{Vec}^{2m}_\mathcal{Q}(\mathbb{T}^{a,3,0})$	\mathbb{Z}_2^4			

More general involutive tori (free-involution case)

PROPOSITION (D. - Gomi, 2016)

$$\mathbb{T}^{a,b,c} \simeq \mathbb{T}^{a+c-1,b,1}$$

$$\forall c \geqslant 2$$

$a+b\leqslant 2, c=1$	a = 0	a = 1	a = 2
$\mathrm{Vec}_{\mathcal{Q}}^m(\mathbb{T}^{a,0,1})$	0	?	?
$\operatorname{Vec}_{\mathcal{Q}}^m(\mathbb{T}^{a,1,1})$?	?	
$\operatorname{Vec}_{\mathcal{Q}}^m(\mathbb{T}^{a,2,1})$?		

For all $m \in \mathbb{N}$ odd or even!

More general involutive tori (free-involution case)

PROPOSITION (D. - Gomi, 2016)

$$\mathbb{T}^{a,b,c} \simeq \mathbb{T}^{a+c-1,b,1}$$

$$\forall c \geqslant 2$$

$a+b\leqslant 2, c=1$	a = 0	a = 1	a = 2
$\mathrm{Vec}_{\mathcal{Q}}^m(\mathbb{T}^{a,0,1})$	0	\mathbb{Z}_2	\mathbb{Z}_2^2
$\operatorname{Vec}_{\mathcal{Q}}^m(\mathbb{T}^{a,1,1})$	2ℤ	$\mathbb{Z}_2 \oplus (2\mathbb{Z})^2$	
$\operatorname{Vec}_{\mathcal{Q}}^m(\mathbb{T}^{a,2,1})$	$(2\mathbb{Z})^2$		

For all $m \in \mathbb{N}$ odd or even!

Outline

1. Time reversal symmetries and "Quaternionic" structures

2. The role of the (involutive) base space

- 3. In the search of a classifying object
- 4. FKMM vs. Fu-Kane-Mele

Relative equivariant cohomology

In [D. - Gomi, 2016] we classified

$$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{0,d,0})$$
 and $\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{1,d-1})$, $d\leqslant 4$

by a **characteristic class** with values in $H^2_{\mathbb{Z}_2}(\mathbb{B}|\mathbb{B}^{\tau},\mathbb{Z}(1))$: the **FKMM-invariant**.

$$H^{1}_{\mathbb{Z}_{2}}(\mathbb{B}^{\tau},\mathbb{Z}(1)) \xrightarrow{\delta_{1}} H^{2}(\mathbb{B}|\mathbb{B}^{\tau},\mathbb{Z}(1)) \xrightarrow{\delta_{2}} H^{2}_{\mathbb{Z}_{2}}(\mathbb{B},\mathbb{Z}(1)) \xrightarrow{r} H^{2}_{\mathbb{Z}_{2}}(\mathbb{B}^{\tau},\mathbb{Z}(1))$$
$$[\mathbb{B}^{\tau},\mathbb{S}^{1,1}]_{\mathbb{Z}_{2}} \qquad \qquad \operatorname{Pic}_{\mathbb{R}}(\mathbb{B},\tau) \qquad \operatorname{Pic}_{\mathbb{R}}(\mathbb{B}^{\tau})$$

Our previous results only apply to the case

$$\mathbb{B}^{\tau} = \{ \text{finite collection of points} \}.$$

To consider more general involutive spaces we need more generality!

The (generalized) FKMM-invariant

THEOREM (D. - Gomi, 2016)

Given (\mathbb{B}, τ) let

$$\operatorname{Pic}_{\mathcal{R}}\big(\mathbb{B}|\mathbb{B}^{\tau},\tau\big) \;:=\; \big\{[(\mathscr{L},\boldsymbol{s})] \mid \mathscr{L} \in \operatorname{Pic}_{\mathcal{R}}(\mathbb{B},\tau)\;,\;\; \boldsymbol{s} : \mathscr{L}|_{\mathbb{B}^{\tau}} \to \mathbb{U}(1)\big\}\;.$$

The choice of ${\bf s}$ is **canonical** and the group structure is given by the **tensor product**. Then

$$\operatorname{Pic}_{\mathcal{R}}(\mathbb{B}|\mathbb{B}^{\tau},\tau) \stackrel{\tilde{k}}{\simeq} H^{2}(\mathbb{B}|\mathbb{B}^{\tau},\mathbb{Z}(1))$$
.

There is a group homomorphism

$$\kappa : \operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{B}, \tau) \longrightarrow H^{2}(\mathbb{B}|\mathbb{B}^{\tau}, \mathbb{Z}(1))$$

called the FKMM-invariant.

- If $(\mathscr{E}, \Theta) \in \operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{B}, \tau)$ then $(\det \mathscr{E}, \det \Theta) \in \operatorname{Pic}_{\mathcal{R}}(\mathbb{B}, \tau)$;
- If exists a canonical $\mathbf{s}_{\mathscr{E}}: \mathbb{B}^{\tau} \to \det \mathscr{E}|_{\mathbb{B}^{\tau}}$
- $(\det \mathscr{E}, s_{\mathscr{E}}) \in \operatorname{Pic}_{\mathcal{R}}(\mathbb{B}|\mathbb{B}^{\tau}, \tau)$

$$\kappa(\mathscr{E},\Theta) := \tilde{\kappa}(\det\mathscr{E}, s_{\mathscr{E}}).$$

Outline

1. Time reversal symmetries and "Quaternionic" structures

2. The role of the (involutive) base space

- 3. In the search of a classifying object
- 4. FKMM vs. Fu-Kane-Mele

$$\kappa : \operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{B}, \tau) \longrightarrow H^{2}(\mathbb{B}|\mathbb{B}^{\tau}, \mathbb{Z}(1))$$

- Isomorphic Q-bundles have the same FKMM-invariant;
- If (\mathcal{E}, Θ) is Q-trivial then $\kappa(\mathcal{E}, \Theta) = 0$;
- κ is **natural** under the pullback induced by equivariant maps;
- $\kappa(\mathscr{E}_1 \oplus \mathscr{E}_2, \Theta_1 \oplus \Theta_2) = \kappa(\mathscr{E}_1, \Theta_1) + \kappa(\mathscr{E}_2, \Theta_2)$
- κ is the image of a **universal class** \mathfrak{h}_{univ} ;
- When $\mathbb{B}^{\tau} = \{\text{finite collection of points}\}$

$$\kappa(\mathscr{E},\Theta) \simeq \mathit{Fu-Kane-Mele invariants}$$
;

• When $\mathbb{B}^{\tau} = \emptyset$

$$\kappa(\mathscr{E},\Theta) \simeq c_1^{\mathcal{R}}(\det\mathscr{E},\det\Theta);$$

- If $\dim(\mathbb{B}) \leq 3$ the map κ is **injective**;
- Over (low dimensional) $\mathbb{S}^{p,q}$ and $\mathbb{T}^{a,b,c}$ the map κ is **bijective**;
- ullet is **not bijective** in general, neither in low dimension ... damn!!;
- When $\mathbb{B}^{\tau} = \emptyset$ and $\mathrm{Pic}_{\mathcal{Q}}(\mathbb{B}, \tau) = \emptyset$ then $\mathrm{Pic}_{\mathcal{Q}}(\mathbb{B}, \tau)$ is a **torsor** over $\mathrm{Pic}_{\mathcal{R}}(\mathbb{B}, \tau)$. Hence

$$\operatorname{Pic}_{\mathcal{Q}}(\mathbb{B}, \tau) \simeq \operatorname{Pic}_{\mathcal{R}}(\mathbb{B}, \tau) \simeq H^{2}(\mathbb{B}|\mathbb{B}^{\tau}, \mathbb{Z}(1)).$$

Thank you for your attention