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Motivation: irreversible quantum dynamics

While the equations of motion governing quantum dynamics are invariant
with respect to time reversal, we often encounter quantum systems
behaving in an irreversible way, for instance

spontaneous decays of particles, nuclei, etc.

inelastic scattering processes

and, of course, an irreversible process par excellence is the wave
packet reduction which is the core of Copenhagen description of
a measuring process performed on a quantum system

A description of such a process is typically associated with enlarging the
state Hilbert space, conventionally referred to as coupling the system to
a heat bath.
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Some folklore claims

It is generally accepted that to obtain an irreversible behavior through
coupling to a heat bath, the following is needed

the bath is a system with infinite number of degrees of freedom

the bath Hamiltonian has a continuous spectrum

the presence (or absence) of irreversible modes is determined by the
energies involved rather than the coupling strength

While this all is true in many cases, one of our aims here is tho show that
neither of the above need not be true in general.
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A disclaimer

If you will feel that the models I am discussing are just caricatures of
processes which may really exist, you to keep in mind all the time a wise
observation of [Bratelli-Robinson’79]:

While the experimentalist might collect all his data between breakfast and
lunch in a small cluttered laboratory, his theoretical colleagues interpret
those interpret those results in term of isolated systems moving eternally in
an infinitely extended space. The validity of such idealizations is the heart
and soul of theoretical physics and has the same fundamental significance
as the reproducibility of experimental data.

P. Exner: Abrupt spectral transitions ... MCQM 2016 February 12, 2016 - 4 -



A disclaimer

If you will feel that the models I am discussing are just caricatures of
processes which may really exist, you to keep in mind all the time a wise
observation of [Bratelli-Robinson’79]:

While the experimentalist might collect all his data between breakfast and
lunch in a small cluttered laboratory, his theoretical colleagues interpret
those interpret those results in term of isolated systems moving eternally in
an infinitely extended space.

The validity of such idealizations is the heart
and soul of theoretical physics and has the same fundamental significance
as the reproducibility of experimental data.

P. Exner: Abrupt spectral transitions ... MCQM 2016 February 12, 2016 - 4 -



A disclaimer

If you will feel that the models I am discussing are just caricatures of
processes which may really exist, you to keep in mind all the time a wise
observation of [Bratelli-Robinson’79]:

While the experimentalist might collect all his data between breakfast and
lunch in a small cluttered laboratory, his theoretical colleagues interpret
those interpret those results in term of isolated systems moving eternally in
an infinitely extended space. The validity of such idealizations is the heart
and soul of theoretical physics and has the same fundamental significance
as the reproducibility of experimental data.

P. Exner: Abrupt spectral transitions ... MCQM 2016 February 12, 2016 - 4 -



After this introduction, the talk outline

The simplest example: Smilansky model

I Spectral properties, the subcritical and supercritical case
I Numerical solution

A regular version of Smilansky model

I Choice of the potential
I Spectral properties, the subcritical and supercritical case
I Intervals and multiple channels

Another model: transition from a purely discrete to the real line

I Potential for which Weyl quantization fails
I Spectral properties, the subcritical and supercritical case
I The critical case

Back to Smilansky model: resonances

Summary & open questions
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Smilansky model

The model was originally proposed in [Smilansky’04] to describe a
one-dimensional system interacting with a caricature heat bath
represented by a harmonic oscillator.

Mathematical properties of the model were analyzed in [Solomyak’04],
[Evans-Solomyak’05], [Naboko-Solomyak’06]. More recently, time
evolution in such a (slightly modified) model was analyzed [Guarneri’11]

In PDE terms, the model is described through a 2D Schrödinger operator

HSm = − ∂2

∂x2
+

1

2

(
− ∂2

∂y2
+ y2

)
+ λyδ(x)

on L2(R) with various modifications to be mentioned later.

Due to a particular choice of the coupling the model exhibited a spectral
transition with respect to the coupling parameter λ.
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A summary of results about the model

Spectral transition: if |λ| >
√

2 the particle can escape to infinity
along the singular ‘channel’ in the y direction. In spectral terms,
it corresponds to switch from a positive to a below unbounded
spectrum at |λ| =

√
2.

At the heuristic level, the mechanism is easy to understand: we have
an effective variable decoupling far from the x-axis and the oscillator
potential competes there with the δ interaction eigenvalue −1

4λ
2y2.

Eigenvalue absence: for any λ ≥ 0 there are no eigenvalues ≥ 1
2 .

If |λ| >
√

2, the point spectrum of HSm is empty.

Existence of eigenvalues: for 0 < |λ| <
√

2 we have HSm ≥ 0. The
point spectrum is nonempty and finite, and

N( 1
2 ,HSm) ∼ 1

4
√

2(µ(λ)−1)

holds as λ→
√

2−, where µ(λ) :=
√

2/λ.
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Further results

Absolute continuity: in the supercritical case |λ| >
√

2 we
have σac(HSm) = R

Extension of the result to a two ‘channel’ case with different
oscillator frequencies [Evans-Solomyak’05]

Extension to multiple ‘channels’ on a system periodic in x
[Guarneri’11]. In this paper the time evolution generated by HSm

is investigated and proposed as a model of wavepacket collapse.

The above results have been obtained by a combination of different
methods: a reduction to an infinite system of ODE’s, facts from
Jacobi matrices theory, variational estimates, etc.

Before proceeding further, let show how the spectrum can be treated
numerically in the subcritical case.
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Numerical search for eigenvalues

In the halfplanes ±x > 0 the wave functions can be expanded using the
‘transverse’ base spanned by the functions

ψn(y) =
1√

2nn!
√
π

e−y
2/2Hn(y)

corresponding to the oscillator eigenvalues n + 1
2 , n = 0, 1, 2, . . . .

Furthermore, one can make use of the mirror symmetry w.r.t. x = 0 and

divide Hλ into the trivial odd part H
(−)
λ and the even part H

(+)
λ which is

equivalent to the operator on L2(R× (0,∞)) with the same symbol
determined by the boundary condition

fx(0+, y) =
1

2
αyf (0+, y) .
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Numerical solution, continued
We substitute the Ansatz

f (x , y) =
∞∑
n=0

cn e−κnxψn(y)

with κn :=
√

n + 1
2 − ε.

This yields for solution with the energy ε the equation

Bλc = 0 ,

where c is the coefficient vector and Bλ is the operator in `2 with

(Bλ)m,n = κnδm,n +
1

2
λ(ψm, yψn) .

Note that the matrix is in fact tridiagonal because

(ψm, yψn) =
1√
2

(√
n + 1 δm,n+1 +

√
n δm,n−1

)
.
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Smilansky model eigenvalues

λ

0 0.5 1

E
n

0

0.2

0.4

In most part of the subcritical region there is a single eigenvalue, the
second one appears only at λ ≈ 1.387559.

The next thresholds are
1.405798, 1.410138, 1.41181626, 1.41263669, . . .
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Smilansky model eigenvalues

Close to the critical value, however, many eigenvalues appear which
gradually fill the interval (0, 1

2 ) as the critical value is approached
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Their number is as predicted

The dots mean the eigenvalue numbers, the red curve is the above
mentioned asymptotics due to Solomyak
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Smilansky model ground state

The numerical solution also indicates other properties, for instance,
that the first eigenvalue behaves as ε1 = 1

2 − cλ4 + o(λ4) as λ→ 0,
with c ≈ 0.0156.
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In fact, we have c = 0.015625

Indeed, the relation Bλc = 0 can be written explicitly as

√
µλc

λ
0 +

λ

2
√

2
cλ1 = 0 ,

√
kλ

2
√

2
cλk−1 +

√
k + µλc

λ
k +

√
k + 1λ

2
√

2
cλk+1 = 0 , k ≥ 1 ,

where µλ := 1
2 − E1(λ) and cλ = {cλ0 , cλ1 , . . . } is the corresponding

normalized eigenvector of Bλ.

Using the above relations and simple estimates, we get

∞∑
k=1

|cλk |2 ≤
3

4
λ2 and cλ0 = 1 +O(λ2)

as λ→ 0+; hence we have in particular cλ1 = λ
2
√

2
+O(λ2).
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2 − E1(λ) and cλ = {cλ0 , cλ1 , . . . } is the corresponding

normalized eigenvector of Bλ.

Using the above relations and simple estimates, we get

∞∑
k=1

|cλk |2 ≤
3

4
λ2 and cλ0 = 1 +O(λ2)

as λ→ 0+; hence we have in particular cλ1 = λ
2
√

2
+O(λ2).
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Smilansky model eigenfunctions
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The first six eigenfunctions of HSm for λ = 1.4128241, in other words,
λ =
√

2− 0.0086105.
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A regular version of Smilansky model
Our next aim is to show that one can observe a similar effect for
Schrödinger operators with regular potentials. Now, however, the coupling
cannot be linear in y and the profile of the channel has to change with y .

Recall that the effect comes from competition between the oscillator
potential with the principal eigenvalue of the ‘transverse’ part of the
operator equal to 1

4λ
2y2.

We replace the δ by a family of shrinking potentials whose mean matches
the δ coupling constant,

∫
U(x , y) dx ∼ y . This can be

achieved, e.g., by choosing U(x , y) = λy2V (xy) for a fixed function V .

This motivates us to investigate the following operator on L2(R2),

H = − ∂2

∂x2
− ∂2

∂y2
+ ω2y2 − λy2V (xy)χ{|x |≤a}(x),

where ω, a are positive constants, χ{|y |≤a} is the indicator function
of the interval (−a, a), and the potential V with suppV ⊂ [−a, a] is
a nonnegative function with bounded first derivative.
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A regular version of Smilansky model, continued

By Faris-Lavine theorem the operator is e.s.a. on C∞0 (R2) and the
same is true for its generalization,

H = − ∂2

∂x2
− ∂2

∂y2
+ ω2y2 −

N∑
j=1

λjy
2Vj(xy)χ{|x−bj |≤aj}(x)

with a finite number of channels, where functions Vj are positive with
bounded first derivative, with the supports contained in (bj − aj , bj + aj)
and such that suppVj ∩ suppVk = ∅ holds for j 6= k .

Remark

We note that the properties discussed below depend on the asymptotic
behavior of the potential channels and would not change if the potential
is modified in the vicinity of the x-axis, for instance, by replacing the
above cut-off functions with χ|y |≥a(y) and χ|y |≥aj (y), respectively.
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Subcritical case

To state the result we employ a 1D comparison operator L = LV ,

L = − d2

dx2
+ ω2 − λV (x)

on L2(R) with the domain H2(R). What matters is the sign of its
spectral threshold; since V is supposed to be nonnegative, the latter
is a monotonous function of λ and there is a λcrit > 0 at which the
sign changes.

Theorem (Barseghyan-E’14)

Under the stated assumption, the spectrum of the operator H is bounded
from below provided the operator L is positive.
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Proof outline

It is sufficient to prove the claim for λ = 1. We employ Neumann
bracketing, similarly as for the previous model.

Let hn and h̃n be respectively the restrictions of operator H to the strips
Gn = R× {y : ln n < y ≤ ln(n + 1)}, n = 1, 2, . . ., and G̃n, their mirror
images w.r.t. y , with Neumann boundary conditions; then

H ≥
∞⊕
n=1

(hn ⊕ h̃n) ;

We find a uniform lower bound σ(hn) and σ(h̃n) as n→∞.

Using the assumptions about V we find

V (xy)− V (x ln n) = O
(

1

n ln n

)
, y2 − ln2 n = O

(
ln n

n

)
for any (x , y) ∈ Gn, and analogous relations for G̃n.
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Proof outline – continued
This yields

y2V (xy)− ln2n V (x ln n) = O
(

ln n

n

)
for for any (x , y) ∈ G̃n

which allows us to check that

inf σ(hn) ≥ inf σ(ln) +O
(

ln n

n

)
,

where ln := − ∂2

∂x2 − ∂2

∂y2 + ω2 ln2n − ln2n V (x ln n) on L2(Gn).

The analogous relation holds for l̃n on L2(G̃n). It is important that all
these operators have separated variables.

Since the minimal eigenvalue of Neumann Laplacian − d2

dy2 on the strips

ln n < y ≤ ln(n + 1), n = 1, 2, . . . , is zero, we have inf σ(ln) = inf σ
(
l
(1)
n

)
,

where the last operator on L2(R) acts as

l
(1)
n = − d2

dx2
+ ω2 ln2n − ln2n V (x ln n)
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Proof outline – concluded

Note that the cut-off function χ{|x |≤a} plays no role in the asymptotic
estimate as it affects a finite number of terms only.

By the change of variable x = t
ln n the last operator is unitarily equivalent

to ln2n L which is non-negative as long as L is non-negative. In the same
way one proves that l̃n is non-negative ; this concludes the proof. �

In the same way one can treat systems restricted in the x direction:

Corollary

Let H be ‘our’ operator on (−c , c)× R for some c ≥ a with Dirichlet
(Neumann, periodic) boundary conditions in the variable x. The spectrum
of H is bounded from below if L ≥ 0 holds, where L is the comparison
operator on L2(−c , c) with Dirichlet (respectively, Neumann or periodic)
boundary conditions.
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Supercritical case

Once the transverse channel principal eigenvalue dominates over the
harmonic oscillator contribution, the spectral behavior changes:

Theorem (Barseghyan-E’14)

Under our hypotheses, σ(H) = R holds if inf σ(L) < 0.

Proof relies on construction of an appropriate Weyl sequence: we have to
find {ψk}∞k=1 ⊂ D(H) such that ‖ψk‖ = 1 which contains no convergent
subsequence, and at same time

‖Hψk − µψk‖ → 0 as k →∞.

The construction is rather technical and we sketch just the main steps.
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Proof outline

The claim is invariant under scaling transformations, hence we may
suppose inf σ(L) = −1. The spectral threshold is a simple isolated
eigenvalue; we denote the corresponding normalized eigenfunction by h.

We want to show first that 0 ∈ σess(H). In fact, it would be enough for
the proof to show that zero belongs to σ(H) but we get the stronger
claim at no extra expense.

We fix an ε > 0 and choose a natural k = k(ε) with which we associate
a function χk ⊂ C 2

0 (1, k) satisfying the following conditions∫ k

1

1

z
χ2
k(z) dz = 1 and

∫ k

1
z(χ′k(z))2 dz < ε.
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Proof outline – continued
Such functions exist: as an example consider

χ̃k(z) =
8 ln3 z

ln3 k
χ{1≤z≤

√
k}(z) +

2 ln k − 2 ln z

ln k
χ{
√
k+1≤z≤k−1}(z)

+gk(z)χ{
√
k<z<

√
k+1}(z) + qk(z)χ{k−1<z≤k}(z),

where gk and qk are interpolating functions chosen in such a way that
χ̃k ∈ C 2

0 (1, k), and define

χk(z) =

(∫ k

1

1

z
χ̃2
k(z) dz

)−1/2

χ̃k(z).

Given such functions χk , put

ψk(x , y) := h(xy) eiy
2/2χk

(
y

nk

)
+

f (xy)

y2
eiy

2/2χk

(
y

nk

)
,

where f (t) := − i
2 t

2h(t), t ∈ R, and nk ∈ N is a positive integer, which
we choose using the following auxiliary result.
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Proof outline – continued

Lemma

Let ψk , k = 1, 2, . . ., as defined above; then for any given k one can
achieve that ‖ψk‖L2(R2) ≥ 1

2 holds by choosing nk large enough.

We need one more auxiliary result:

Lemma

Let ψk , k = 1, 2, . . ., be again functions defined above; then the inequality
‖Hψk‖2

L2(R2) < cε with a fixed constant c holds for k = k(ε).

Proofs are in both cases straightforward but rather tedious.
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Proof outline – concluded

Using the lemmata, we are able to complete the proof. We fix a sequence
{εj}∞j=1 such that εj ↘ 0 holds as j →∞ and to any j we construct a
function ψk(εj ) in such a way that nk(εj ) > k(εj−1)nk(εj−1).

The norms of Hψk(εj ) are bounded from above with 9εj on the right-hand
side, and since the supports of ψk(εj ), j = 1, 2, . . . , do not intersect each
other by construction, their sequence converges weakly to zero.

This yields the sought Weyl sequence for zero energy; for any nonzero real
number µ we use the same procedure replacing the above ψk with

ψk(x , y) = h(xy) eiεµ(y)χk

(
y

nk

)
+

f (xy)

y2
eiεµ(y)χk

(
y

nk

)
,

where εµ(y) :=
∫ y√
|µ|

√
t2 + µ dt, and furthermore, the functions f , χk

are defined in the same way as above. �
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Restricted motion

In the supercritical case, too, the result extends to systems restricted
in the x direction:

Theorem

Let H be the ‘our’ operator on L2(−c , c)⊗ L2(R) for some c > 0 with
Dirichlet condition at x = ±c and denote by L the corresponding Dirichlet
operator on L2(−c , c). If the spectral threshold of L is negative, the
spectrum of H covers the whole real axis.

Observing the domains of the quadratic form associated with such
operators we get

Corollary

The claim of the above theorem remains valid if the Dirichlet boundary
conditions at x = ±c are replaced by any other self-adjoint boundary
conditions.
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The multichannel case

The above results are interesting not only per se or to deal with the
Guarneri-type periodic modification of the model.

Using a simple bracketing argument we can show how the spectral-regime
transition looks like in the multichannel case:

Theorem (Barseghyan-E’14)

Let H be ‘our’ operator with the potentials satisfying the stated
assumptions, namely the functions Vj are positive with bounded first
derivative and suppVj ∩ suppVk = ∅ holds for j 6= k. Denote by Lj
the comparison operator on L2(R) with the potential Vj and set
tV := minj inf σ(Lj). Then H is bounded from below if and only if
tV ≥ 0 and in the opposite case its spectrum covers the whole real axis.
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Another model class
Consider next a related family of systems in which the transition is even
more dramatic passing from purely discrete spectrum in the subcritical
case to the whole real line in the supercritical one.

Recall that there are situations where Weyl’s law fails and the spectrum is
discrete even if the classically allowed phase-space volume is infinite. A
classical example due to [Simon’83] is a 2D Schrödinger operator with the
potential

V (x , y) = x2y2

or more generally, V (x , y) = |xy |p with p ≥ 1.

Similar behavior one can observe for Dirichlet Laplacians in regions with
hyperbolic cusps – see [Geisinger-Weidl’11] for recent results and a survey.
Moreover, using the dimensional-reduction technique of Laptev and Weidl
one can prove spectral estimates for such operators.

A common feature of these models is that the particle motion is confined
into channels narrowing towards infinity.
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Adding potentials unbounded from below

This may remain true even for Schrödinger operators with unbounded
from below in which a classical particle can escape to infinity with an
increasing velocity.

The situation changes, however, if the attraction is strong enough

As an illustration, let us analyze the following class of operators:

Lp(λ) : Lp(λ)ψ = −∆ψ +
(
|xy |p − λ(x2 + y2)p/(p+2)

)
ψ , p ≥ 1

on L2(R2), where (x , y) are the standard Cartesian coordinates in R2 and
the parameter λ in the second term of the potential is non-negative; unless
the value of λ is important we write it simply as Lp.

Note that 2p
p+2 < 2 so the operator is e.s.a. on C∞0 (R2) by Faris-Lavine

theorem again; the symbol Lp or Lp(λ) will always mean its closure.
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The subcritical case

The spectral properties of Lp(λ) depend crucially on the value of λ and
there is a transition between different regimes as λ changes.

Let us start with the subcritical case which occurs for small values of λ.
To characterize the smallness quantitatively we need an auxiliary operator
which will be an (an)harmonic oscillator Hamiltonian on line,

H̃p : H̃pu = −u′′ + |t|pu

on L2(R) with the standard domain. Let γp be the minimal eigenvalue of
this operator; in view of the potential symmetry we have γp = inf σ(Hp),
where

Hp : Hpu = −u′′ + tpu

on L2(R+) with Neumann condition at t = 0.
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The subcritical case – continued
The eigenvalue γp = inf σ(Hp) equals one for p = 2; for p →∞ it
becomes γ∞ = 1

4π
2; it smoothly interpolates between the two values.

Since xp ≥ 1− χ[0,1](x) we have γp ≥ ε0 ≈ 0.546, where ε0 is the
ground-state energy of the rectangular potential well of depth one.

In fact, a numerical solution gives true minimum γp ≈ 0.998995 attained
at p ≈ 1.788; in the semilogarithmic scale the plot is as follows:
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The subcritical case – continued

The spectrum is naturally bounded from below and discrete if λ = 0; our
aim is to show that this remains to be the case provided λ is small enough.

Theorem (E-Barseghyan’12)

For any λ ∈ [0, λcrit], where λcrit := γp, the operator Lp(λ) is bounded
from below for p ≥ 1; if λ < γp its spectrum is purely discrete.

Idea of the proof: Let λ < γp. By minimax we need to estimate Lp from
below by a s-a operator with a purely discrete spectrum. To construct it
we employ bracketing imposing additional Neumann conditions at
concentric circles of radii n = 1, 2, . . . .

In the estimating operators the variables decouple asymptotically and the
spectral behavior is determined by the angular part of the operators.
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Subcritical behavior – the proof
Specifically, in polar coordinates we get direct sum of operators acting as

L
(1)
n,pψ = −1

r

∂

∂r

(
r
∂ψ

∂r

)
− 1

n2

∂2ψ

∂ϕ2
+

(
r2p

2p
| sin 2ϕ|p − λr2p/(p+2)

)
ψ

on the annuli Gn := {(r , ϕ) : n − 1 ≤ r < n, 0 ≤ ϕ < 2π}, n = 1, 2, . . .
with Neumann conditions imposed on ∂Gn.

Obviously σ(L
(1)
n,p) is purely discrete for each n = 1, 2, . . . , hence it is

sufficient to check that inf σ(L
(1)
n,p)→∞ holds as n→∞.

We estimate L
(1)
n,p from below by an operator with separating variables,

note that the radial part does not contribute and use the symmetry of the
problem; for ε ∈ (0, 1) the question is then to analyze

L
(2)
n,p : L

(2)
n,pu = −u′′ +

(
n2p+2

2p
sinp 2x − λ

1− ε
n(4p+4)/(p+2)

)
u

on L2(0, π/4) with Neumann conditions, u′(0) = u′(π/4) = 0.
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Subcritical behavior – proof continued

We have n2 inf σ(L
(1)
n,p) ≥ inf σ(L

(2)
n−1,p) if n is large enough, specifically for

n >
(
1− (1− ε)(p+2)/(4p+4)

)−1
, hence it is sufficient to investigate the

spectral threshold µn,p of L
(2)
n,p as n→∞.

The trigonometric potential can be estimated by a powerlike one with the
similar behavior around the minimum introducing, e.g.

L(3)
n,p := − d2

dx2
+ n2p+2xp

(
χ(0,δ(ε)](x) +

(
2

π

)p

χ[δ(ε),π/4)(x)

)
− λ′ε n(4p+4)/(p+2)

for small enough δ(ε) with Neumann boundary conditions at x = 0, 1
4π,

where we have denoted λ′ε := λ(1− ε)−p−1.

We have L
(2)
n,p ≥ (1− ε)pL

(3)
n,p. To estimate the rhs by comparing the

indicated potential contributions it is useful to pass to the rescaled
variable x = t · n−(2p+2)/(p+2).
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variable x = t · n−(2p+2)/(p+2).
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Subcritical behavior – proof continued

We have n2 inf σ(L
(1)
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(2)
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)−1
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Subcritical behavior – proof concluded

In this way we find that µ′n,p := inf σ(L
(3)
n,p) satisfies

µ′n,p
n2
→∞ as n→∞

Through the chain of inequalities we come to conclusion that

inf σ(L
(1)
n,p)→∞ holds as n→∞ which proves discreteness of the

spectrum for λ < γp.

If λ = γp the sequence of spectral thresholds no longer diverges but it
remains bounded from below and the same is by minimax principle true for
the operator Lp(λ). �

Remark

It is natural to conjecture that σ(Lp(γp)) ⊃ R+. There may be a
negative discrete spectrum in the critical case; we return to this
question a little later.
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The supercritical case

Theorem (E-Barseghyan’12)

The spectrum of Lp(λ), p ≥ 1 , is unbounded below from if λ > λcrit.

Idea of the proof: Similar as above with a few differences:

now we seek an upper bound to Lp(λ) by a below unbounded
operator, hence we impose Dirichlet conditions on concentric circles

the estimating operators have now a nonzero contribution from the
radial part, however, it is bounded by π2 independently of n

the negative λ-dependent term now outweights the anharmonic

oscillator part so that inf σ(L
(1,D)
n,p )→ −∞ holds as n→∞ �

Using suitable Weyl sequences similar to those the previous model,
however, we are able to get a stronger result:

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

σ(Lp(λ)) = R holds for any λ > γp and p > 1.
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Spectral estimates: bounds to eigenvalue sums
Let us return to the subcritical case and define the following quantity:

α :=
1

2

(
1 +
√

5
)2
≈ 5.236 > γ−1

p

We denote by {λj ,p}∞j=1 the eigenvalues of Lp(λ) arranged in the
ascending order; then we can make the following claim.

Theorem (E-Barseghyan’12)

To any nonnegative λ < α−1 ≈ 0.19 there exists a positive constant Cp

depending on p only such that the following estimate is valid,

N∑
j=1

λj ,p ≥ Cp(1− αλ)
N(2p+1)/(p+1)

(lnp N + 1)1/(p+1)
− cλN, N = 1, 2, . . .,

where c = 2
(
α2

4 + 1
)
≈ 15.7.
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Cusp-shaped regions

The above bounds are valid for any p ≥ 1, hence it is natural to ask
about the limit p →∞ describing the particle confined in a region with
four hyperbolic ‘horns’, D = {(x , y) ∈ R2 : |xy | ≤ 1}, described by the
Schrödinger operator

HD(λ) : HD(λ)ψ = −∆ψ − λ(x2 + y2)ψ

with a parameter λ ≥ 0 and Dirichlet condition on the boundary ∂D.

Theorem (E-Barseghyan’12)

The spectrum of HD(λ) is discrete for any λ ∈ [0, 1) and the spectral
estimate

N∑
j=1

λj ≥ C (1− λ)
N2

1 + ln N
, N = 1, 2, . . .

holds true with a positive constant C.
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Proof outline
To get the estimate for cusp-shaped regions, one can check that for any
u ∈ H1 satisfying the condition u|∂D = 0 the inequality∫

D
(x2 + y2)u2(x , y) dx dy ≤

∫
D
|(∇ u) (x , y)|2 dx dy

is valid which in turn implies

HD(λ) ≥ −(1− λ)∆D ,

where ∆D is the Dirichlet Laplacian on the region D.

The result then follows from the eigenvalue estimates on ∆D known from
[Simon’83], [Jakšić-Molchanov-Simon’92].

The proof for p ∈ (1,∞) is more complicated, using splitting of R2 into
rectangular domains and estimating contributions from the channel
regions, the middle part, and the rest. We will not discuss it here, because
we are able to demonstrate a stronger result à la Lieb and Thirring.
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Better spectral estimates

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

Given λ < γp, let λ1 < λ2 ≤ λ3 ≤ · · · be eigenvalues of Lp(λ). Then for
Λ ≥ 0 and σ ≥ 3/2 the following inequality is valid,

tr (Λ− Lp(λ))σ+ ≤ Cp,σ

(
Λσ+(p+1)/p

(γp − λ)σ+(p+1)/p
ln

(
Λ

γp − λ

)
+ C2

λ

(
Λ + C

2p/(p+2)
λ

)σ+1
)
,

where the constant Cp,σ depends on p and σ only and

Cλ =: max

{
1

(γp − λ)(p+2)/(p(p+1))
,

1

(γp − λ)(p+2)2/(4p(p+1))

}
.

Sketch of the proof: By minimax principle we can estimate Lp(λ) from
below by a self-adjoint operator with a purely discrete negative spectrum
and derive a bound to the momenta of the latter.

We split R2 again, now in a ‘lego’ fashion using a monotone sequence
{αn}∞n=1 such that αn →∞ and αn+1 − αn → 0 holds as n→∞.
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Proof sketch

G1

G2

G3

Q1 Q2 Q3

x = α1 α2 α3 . . .
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Proof sketch, continued

Estimating the ‘transverse’ variables by by their extremal values, we
reduce the problem essentially to assessment of the spectral threshold
of the anharmonic oscillator with Neumann cuts.

Lemma

Let lk,p = − d2

dx2 + |x |p be the Neumann operator on [−k , k], k > 0. Then

inf σ (lk,p) ≥ γp + o
(
k−p/2

)
as k →∞.

Combining it with the ‘transverse’ eigenvalues
{

π2k2

(αn+1−αn)2

}∞
k=0

, using

Lieb-Thirring inequality for this situation [Mickelin’16], and choosing
properly the sequence {αn}∞n=1, we are able to prove the claim. �
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The critical case

Let us return to L := −∆ + |xy |p − γp(x2 + y2)p/(p+2) and the conjectures
we made about its spectrum. Concerning the essential spectrum:

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

We have σess(L) ⊃ [0,∞).

This can be proved in the same as above using suitable Weyl sequences.

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

The negative spectrum of L is discrete.

The proof uses a ‘lego’ estimate similar to the one presented above.

For the moment, however, we cannot prove that σdisc(L) is nonempty. We
conjecture that it is the case having a strong numerical evidence for that.

P. Exner: Abrupt spectral transitions ... MCQM 2016 February 12, 2016 - 46 -



The critical case

Let us return to L := −∆ + |xy |p − γp(x2 + y2)p/(p+2) and the conjectures
we made about its spectrum. Concerning the essential spectrum:

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

We have σess(L) ⊃ [0,∞).

This can be proved in the same as above using suitable Weyl sequences.

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

The negative spectrum of L is discrete.

The proof uses a ‘lego’ estimate similar to the one presented above.

For the moment, however, we cannot prove that σdisc(L) is nonempty. We
conjecture that it is the case having a strong numerical evidence for that.

P. Exner: Abrupt spectral transitions ... MCQM 2016 February 12, 2016 - 46 -



The critical case

Let us return to L := −∆ + |xy |p − γp(x2 + y2)p/(p+2) and the conjectures
we made about its spectrum. Concerning the essential spectrum:

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

We have σess(L) ⊃ [0,∞).

This can be proved in the same as above using suitable Weyl sequences.

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

The negative spectrum of L is discrete.

The proof uses a ‘lego’ estimate similar to the one presented above.

For the moment, however, we cannot prove that σdisc(L) is nonempty. We
conjecture that it is the case having a strong numerical evidence for that.

P. Exner: Abrupt spectral transitions ... MCQM 2016 February 12, 2016 - 46 -



The critical case

Let us return to L := −∆ + |xy |p − γp(x2 + y2)p/(p+2) and the conjectures
we made about its spectrum. Concerning the essential spectrum:

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

We have σess(L) ⊃ [0,∞).

This can be proved in the same as above using suitable Weyl sequences.

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

The negative spectrum of L is discrete.

The proof uses a ‘lego’ estimate similar to the one presented above.

For the moment, however, we cannot prove that σdisc(L) is nonempty. We
conjecture that it is the case having a strong numerical evidence for that.

P. Exner: Abrupt spectral transitions ... MCQM 2016 February 12, 2016 - 46 -



The critical case

Let us return to L := −∆ + |xy |p − γp(x2 + y2)p/(p+2) and the conjectures
we made about its spectrum. Concerning the essential spectrum:

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

We have σess(L) ⊃ [0,∞).

This can be proved in the same as above using suitable Weyl sequences.

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

The negative spectrum of L is discrete.

The proof uses a ‘lego’ estimate similar to the one presented above.

For the moment, however, we cannot prove that σdisc(L) is nonempty. We
conjecture that it is the case having a strong numerical evidence for that.

P. Exner: Abrupt spectral transitions ... MCQM 2016 February 12, 2016 - 46 -



The critical case

Let us return to L := −∆ + |xy |p − γp(x2 + y2)p/(p+2) and the conjectures
we made about its spectrum. Concerning the essential spectrum:

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

We have σess(L) ⊃ [0,∞).

This can be proved in the same as above using suitable Weyl sequences.

Theorem (Barseghyan-E-Khrabustovskyi-Tater’16)

The negative spectrum of L is discrete.

The proof uses a ‘lego’ estimate similar to the one presented above.

For the moment, however, we cannot prove that σdisc(L) is nonempty. We
conjecture that it is the case having a strong numerical evidence for that.

P. Exner: Abrupt spectral transitions ... MCQM 2016 February 12, 2016 - 46 -



Bracketing: numerical analysis

We solve our spectral problem with p = 2 in a disc of radius R with
Dirichlet and Neumann condition at the boundary, and plot the first two
eigenvalues as a function of R.

This indicates that the original critical problem has for p = 2 a single
eigenvalue E1 ≈ −0.18365.
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Ground state eigenfunction
We also find the eigenfunction, note that with the R = 20 cut-off the
Dirichlet and Neumann ones are practically identical; the outer level
marks the 10−3 value.
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Positivity: is there a critical coupling?

The shaded region indicates the part of the (λ, p) plane where the lowest
eigenvalue of the cut-off operator is positive. The two curves meet at
p ≈ 20.392 corresponding to λcrit ≈ 1.563. For higher values of p the
numerical accuracy is a demanding problem, we nevertheless conjecture
that at least the Dirichlet region operator, p =∞, is positive.
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Back to Smilansky model: resonances
There are other interesting effects in these models. Let us show, for
instance, that Smilansky model can exhibit resonances.

The first question in this respect is which resonances we speak about.
There are resolvent resonances associated with poles in the analytic
continuation of the resolvent over the cut(s) corresponding to the
continuous spectrum, and scattering resonances identified with
singularities of the scattering matrix.

The former are found using the same Jacobi matrix problem as before,
of course, this time with a ‘complex energy’.

Let is look at the latter. Suppose the incident wave comes in the m-th
channel from the left. We use the Ansatz

f (x , y) =


∑∞

n=0

(
δmne−ipxψn(y) + rmn eix

√
p2+εm−εnψn(y)

)
∑∞

n=0 tmn e−ix
√

p2+εm−εnψn(y)

for ∓x > 0, respectively, where εn = n + 1
2 and the incident wave energy

is assumed to be p2 + εm =: k2.
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Smilansky model resonances, continued

It is straightforward to compute from here the boundary values f (0±, y)
and f ′(0±, y). The continuity requirement at x = 0 together with the
orthonormality of the basis {ψn} yields

tmn = δmn + rmn .

Furthermore, we substitute the boundary values coming from the Ansatz
into

f ′(0+, y)− f ′(0−, y)− λyf (0, y) = 0

and integrate the obtained expression with
∫

dy ψl(y). This yields

∞∑
n=0

(
2pnδln − iλ(ψl , yψn)

)
rmn = iλ(ψl , yψm) ,

where we have denoted pn = pn(k) :=
√
k2 − εn.
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Smilansky model resonances, continued

In particular, poles of the scattering matrix are associated with the
kernel of the `2 operator on the left-hand side.

This is the same condition,
however, we had before, thus we have

Proposition

The resolvent and scattering resonances coincide in the Smilansky model.

Remarks: (a) The on-shell scattering matrix is a ν × ν matrix where
ν :=

[
k2 − 1

2

]
whose elements are the transmission and reflection

amplitudes; they have common singularities.

(b) The resonance condition may have (and it has) numerous solutions,
but only those ‘not far from the physical sheet’ are of interest.

(c) The Riemann surface of energy has infinite number of sheets
determined by the choices branches of the square roots. The interesting
resonances on the n-th sheet are obtained by flipping sign of the first
n − 1 of them.
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Smilansky model resonances: weak coupling

The weak-coupling analysis follows the route as for the discrete spectrum
– in fact it includes the eigenvalue case if we stay on the ‘first’ sheet – and
shows that for small λ a resonance poles splits of each threshold according
to the asymptotic expansion

µn(λ) = −λ
4

64

(
2n + 1 + 2in(n + 1)

)
+ o(λ4) .

Hence the distance for the corresponding threshold is proportional to λ4

and the trajectory asymptote is the ‘steeper’ the larger n is.

Numerically, however, one can go beyond the weak coupling regime – and
the picture becomes more intriguing
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Examples of resonance trajectories

Resonance trajectories as λ changes for zero to
√

2. The weak-coupling
asymptotes are shown. The ‘non-threshold’ resonances at the second and
third sheet appear at λ = 1.287 and λ = 1.19, respectively.

P. Exner: Abrupt spectral transitions ... MCQM 2016 February 12, 2016 - 54 -



Summary & open questions

We have analyzed spectral transitions in several classes of model
coming from competition between a below positive and negative
contributions of energy appearing in such potential ‘channels’

Various questions remain open, for instance, about the properties
of the σdisc(L) indicated numerically

More generally, if the potential channels are regular and one has more
than one transverse eigenvalue, one can conjecture that the spectral
multiplicity will become larger after crossing each such threshold

One can also conjecture that the spectrum will be absolutely
continuous on the supercritical case, as it is established for the
original Smilansky model

The story of resonances has been only lightly touched and a lot
remains to be done
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It remains to say

Thank you for your attention!
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