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@ The NLS is an ubiquitous equation describing several nonlinear
phenomena

@ There are simplified models where the nonlinearity is concentrated at
point

o Widely used in physics for diffraction of electrons from a thin layer,
analysis of nonlinear resonant tunneling, models of soliton bifurcation and
so on. At a formal level, they correspond to the equation

- u(t) = ~A(e) + 7 8ol (B b 1)
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Here we discuss the range of application of this equation: how it can be
derived as an effective equation from a more fondamental one. We focus on
the concentration of the interaction in a single point.

The one dimensional case and the three dimensional case are quite different.
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Let 1o € D, ify >0 and Vu > 0 or ify <0 and 0 < u < 1 then there is a a
global solution ¢ € C([0, T], D) N C*([0.T]. L>(R®)). Moreover energy and
mass are conserved along the solutions.
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Moreover it is natural to prove the convergence of 1° to ¢ in the L3-norm.



Main theorem

Let o € D and assume v > 0 or v < 0 and 0 < u < 1. Let 4(t) be the
solution of the limit problem and let 1)°(t) the solution of the approximating
problem with the initial datum as discussed before. Then for any T > 0 we
have

sup [[4°(t) —¥(t)|2 <ce®  0<<1/4
te[0,T]
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We have to reconstruct the structure of the limit in the approximating
problem.
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The approximating problem takes the form:

U (00 = (U 1 [ dsUe =97 () (-1 451 (9P) 0" (9
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Convergence is reduced to the convergence of initial datum and convergence
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te[0,T]
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An equation for 1'/?q can be easily derived and we have
t t
2q(t) + amvai [ dsla(s)als) = anvaiy [ ds(Ul)u)(0)
0 0
On the contrary for 1/2g° we do not obtain a closed equation

P e an iy [ dslar () a(s) = 4 [ ds (U +Y7 ()
0 0



Ideas from the proof

The source term has the following expression

Ye(R) =) Y (o),

j=t

Yi(t) = —(47r)2\/7?/0td7q5(7) /Ooo dk ((A(=K))” = (p(0))") e 77,

Vi) = Vs [ aria P ) [ ak (@) (0 e 0

lg°(7)*q

Ys(t) = 76 / ?T()’
vile) = amvai / ds (o, Ui) - | t ds(U(s))(D)).
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1"2(q° — q)(t) + 47r\/5v/0 ds(1q°(s)[*a"(s) — la(s)[*a(s)) = Y*(2).

to prove the convergence of 112g° to 1'/%q it s sufficient to prove the
following estimates:
1/2
Y5l 0,7y < CeY

102 ()10, < C&°

Some a priori estimates are used

la°lle < ¢ sup[[Ve“(t)ll2 < c
t

T -

Notice that the first couple holds only on the same range of parameters where
the limit problem has a global solution.
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Some perspectives:
@ 3d nonlocal on form domain: space-time norm
@ 3d local approximation with resonant potential

@ 1d local approximation with singular scaling of resonant potential
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Self-adjoint operator H,

d2

Ho= "5

+ ado a€eR

D(H.) = {v € H(R\{0}) N H'(R), ¥/(0+) —v/(0-) = av(0) }
Hop = —o” Vx #0
Representation for the unitary group generated by H,
.d
{ S(e) = Hau(t)
¥(0) = 1o

woeHl

P(t,x) = (U(t) * o) (x) — i/t aU(t —s,x)y(s,0)ds

U(t,x) =



1d nonlinear case

The non linear model is defined by posing o — (1)) = | (0)**



1d nonlinear case

The non linear model is defined by posing o — (1)) = | (0)**

d
{ ig¥ = Haw)¥ o € H!

¥(0) = o

P(t,x) = (U(t) * o) (x) — iy /0: U(t — s, x)|e(s, 0)[** (s, 0)ds



1d nonlinear case

The non linear model is defined by posing o — (1)) = | (0)**

d
{ ig¥ = Haw)¥ o € H!

¥(0) = o
P(t, x) = (U(t) * o) (x) — "Y/Ot U(t — s, x)[v(s, 0)[*4(s,0)ds

£w0) = [ et/ (e + g (e 02

This equation has a global solution for 1o € H*(R) if v > 0 and Vi > 0 or if
v < 0 and 0 < pu < 1. Moreover energy is conserved along the solutions.
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Approximating problem

We know that in one dimension

For 1o € H'(R) we define an approximating problem
U0 = U~ (s [ay Ule—six-) TV () 10707 (s.)

P9 (1) = 0 () + V(X)W (0 (1, 0)

Also for the approximating problem energy is conserved

@) = [ el + oy [a v (X) e

+1
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@ under the above hypothesis both the approximating problem and the limit
one have global solutions

@ notice that the limit problem in the focusing case is global only in the sub
cubical case
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The following a priori estimate is crucial

A priori estimate

Take V € L'(R, (x) dx) N L>°(R) and let V >0 or u € (0,1) then we have

sup [[°() [l < ¢
teER

It is derived from the conservation of energy

£ € e/ 1 1 X e m
e W () = [l (e + g [ oy (2) e

Notice that it implies a uniform bound on the L*° norm



Ideas from the proof

Since the limit evolution has the form
W(t, %) = (U(E) * o) (x) — "7/0 U(t — 5, x)[(s, 0) (s, 0)ds

the first step is the convergence of ¥°(t,0)

Convergence in the defect

Take V € L'(R, (x) dx) N L>(R) and let V >0 or u € (0,1) then for any
T >0and 0< 6 < 1/2we have

sup [4°(t,0) — 9(t,0)] < ce’
te(0,T)
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As intermediate step we prove convergence in L*(R)

2
L°-convergence

Take V € L'(R, (x) dx) N L>°(R) and let V > 0 or u € (0,1) then for any
T >0and 0<d < 1/2we have

sup [[%°(2) — %(t)ll2 < &’
te(0,T)

The convergence is strengthened to H' by a soft argument but we lose the
rate.



Some remarks

@ the proof holds for N defects not just one
@ nonlocal approximations are also possible
o notice that we assume the positivity of V not of v = [V

@ we could soften the hypothesis on V



