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The NLS is an ubiquitous equation describing several nonlinear
phenomena

There are simplified models where the nonlinearity is concentrated at
point

Widely used in physics for diffraction of electrons from a thin layer,
analysis of nonlinear resonant tunneling, models of soliton bifurcation and
so on. At a formal level, they correspond to the equation

i
d

dt
ψ(t) = −∆ψ(t) + γ δ0|ψ(t)|2µψ(t)
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Preliminaries

The correct mathematical formulation of the previous equation is given by:

ψ(t, x) = (U(t)ψ0)(x) + i

∫ t

0

U(t − s, x)q(s)ds U(t, x) =
exp(i x

2

4t
)

(4πit)3/2

q(t) + 4
√
πiγ

∫ t

0

|q(s)|2µq(s)√
t − s

ds = 4
√
πi

∫ t

0

(U(s)ψ0)(0)√
t − s

ds

Rigorous analysis concerning existence of dynamics, blow up, orbital stability,
asymptotic stability [Adami, Dell’Antonio, Figari, Noja, Ortoleva, Teta,...]

Here we discuss the range of application of this equation: how it can be
derived as an effective equation from a more fondamental one. We focus on
the concentration of the interaction in a single point.

The one dimensional case and the three dimensional case are quite different.
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Linear case

Delta-interaction in dimension three

Hα = −∆ + αδ0

D(Hα) =
{
ψ = φ+

q

4π|x| ; φ ∈ Ḣ2(R3) ; q ∈ C; φ(0) = αq
}

and
Hαψ = −∆φ x 6= 0

The evolution can be represented by

ψ(t, x) = (U(t)ψ0)(x) + i

∫ t

0

U(t − s, x)q(s)ds

q(t) + 4
√
πi

∫ t

0

αq(s)√
t − s

ds = 4
√
πi

∫ t

0

(U(s)ψ0)(0)√
t − s

ds
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Nonlinear case

The nonlinear model is obtained by introducing a nonlinear coupling
α→ α(ψ) = γ|q|2µ

ψ(t, x) = (U(t)ψ0)(x) + i

∫ t

0

U(t − s, x)q(s)ds

q(t) + 4
√
πiγ

∫ t

0

|q(s)|2µq(s)√
t − s

ds = 4
√
πi

∫ t

0

(U(s)ψ0)(0)√
t − s

ds

Define

D =
{
ψ = φ+

q

4π|x| ; φ ∈ Ḣ2(R3) ; q ∈ C; φ(0) = γ|q|2µq
}

Conserved quantities:

E(ψ) =

∫
dx |∇φ|2 +

γ

µ+ 1
|q|2µ+2 M[ψ] = ‖ψ‖2L2

Theorem

Let ψ0 ∈ D, if γ > 0 and ∀µ > 0 or if γ < 0 and 0 < µ < 1 then there is a a
global solution ψ ∈ C([0,T ], D) ∩ C 1([0.T ]. L2(R3)). Moreover energy and
mass are conserved along the solutions.
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Approximating problem in the linear case

The approximation of a three dimensional delta-interaction is more delicate
than the one dimensional case.

−∆ +
1

ε3
V
(x
ε

)
6→ −∆ + αδ0

More subtle phenomena are involved: resonant potential for local
approximation, renormalization for non local approximation.

Hε = −∆− βε|ρε〉〈ρε| ρε(x) =
1

ε3
ρ
(x
ε

)
There is convergence Hε → Hα in norm resolvent sense iff

1

βε
=
`

ε
+ α ` =

∫
dk

ρ̂2(k)

|k|2

It relies on a cancellation in an essential way.

Hε = −∆ +
ε

`

(
−1 + α

ε

`

)
|ρε〉〈ρε|
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Approximating problem in the non linear case

The linear case suggest as non local approximation:

i
d

dt
ψε(t) = −∆ψε +

(
−1 + γ

ε2µ+1|(ρε, ψε(t))|2µ

`2µ+1

)
ε

`
(ρε, ψε(t))ρε

For finite ε this is a well behaved NLS on H2(R3) while the solutions of the
limit equation belongs to D which has trivial intersection with H2(R3).

Therefore if we want to work with H2-solutions of the approximating problem,
we need a smooth initial datum which approximate the initial datum on D:

ψ0 = φ0 +
q0

4π|x| ψε0 = φ0 +
q0
4π

(ρε ∗ 1

| · | )(x)

Moreover it is natural to prove the convergence of ψε to ψ in the L2-norm.
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Main theorem

Theorem

Let ψ0 ∈ D and assume γ > 0 or γ < 0 and 0 < µ < 1. Let ψ(t) be the
solution of the limit problem and let ψε(t) the solution of the approximating
problem with the initial datum as discussed before. Then for any T > 0 we
have

sup
t∈[0,T ]

‖ψε(t)− ψ(t)‖L2 ≤ c εδ 0 ≤ δ < 1/4



Ideas from the proof

We have to reconstruct the structure of the limit in the approximating
problem.

qε(t) =
ε

`
(ρε, ψε(t)) φε(t) = ψε(t)− qε(t)ρε ∗ 1

4π| · |

The approximating problem takes the form:

ψε(t, x) = (U(t)ψε0 )(x)− i

∫ t

0

ds U(t − s)ρε (x)
(
−1 + γ

ε

`
|qε(s)|2µ

)
qε(s)
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Ideas from the proof

Convergence is reduced to the convergence of initial datum and convergence
of charge in a suitable topology

sup
t∈[0,T ]

‖ψε(t)− ψ(t)‖L2 ≤ c
(
‖ψε0 − ψ0‖L2 + ‖I 1/2(q − qε)‖L∞(0,T ) + ε1/4

)

I 1/2f (t) =

∫ t

0

ds
f (s)√
t − s

An equation for I 1/2q can be easily derived and we have

I 1/2q(t) + 4π
√
πiγ

∫ t

0

ds |q(s)|2µq(s) = 4π
√
πiγ

∫ t

0

ds (U(s)ψ0)(0)

On the contrary for I 1/2qε we do not obtain a closed equation

I 1/2qε(t)+4π
√
πiγ

∫ t

0

ds |qε(s)|2µqε(s) = 4π
√
πiγ

∫ t

0

ds (U(s)ψ0)(0)+Y ε(t)
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Ideas from the proof

The source term has the following expression

Y ε(t) =
4∑

j=1

Y ε
j (t),

Y ε
1 (t) = −(4π)2

√
πi

∫ t

0

dτqε(τ)

∫ ∞
0

dk ((ρ̂(εk))2 − (ρ̂(0))2) e−ik2(t−τ),

Y ε
2 (t) = (4π)2

√
πiγ

ε

`

∫ t

0

dτ |qε(τ)|2µqε(τ)

∫ ∞
0

dk ((ρ̂(εk))2−(ρ̂(0))2) e−ik2(t−τ),

Y ε
3 (t) = γ

ε

`

∫ t

0

dτ
|qε(τ)|2µqε(τ)√

t − τ
,

Y ε
4 (t) = 4π

√
πi

(∫ t

0

ds (ρε,U(s)ψε0 )−
∫ t

0

ds(U(s)ψ0)(0)

)
.



Ideas from the proof

Starting from

I 1/2(qε − q)(t) + 4π
√
πi γ

∫ t

0

ds(|qε(s)|2µqε(s)− |q(s)|2µq(s)) = Y ε(t).

to prove the convergence of I 1/2qε to I 1/2q it s sufficient to prove the
following estimates:

‖Y ε‖L∞(0,T ) ≤ Cε1/2

‖D1/2Y ε(t)‖L1(0,T ) ≤ Cεδ

Some a priori estimates are used

‖qε‖L∞ ≤ c sup
t
‖∇φε(t)‖L2 ≤ c

‖q̇ε‖L∞ ≤ cε−3/2 ‖D1/2qε‖L1 ≤ cε−1/2+δ

Notice that the first couple holds only on the same range of parameters where
the limit problem has a global solution.
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1d linear case

Self-adjoint operator Hα

Hα = − d2

dx2
+ αδ0 α ∈ R

D(Hα) =
{
ψ ∈ H2(R\{0}) ∩ H1(R), ψ′(0+)− ψ′(0−) = αψ(0)

}
Hαψ = −ψ′′ ∀x 6= 0

Representation for the unitary group generated by Hα i
d

dt
ψ(t) = Hαψ(t)

ψ(0) = ψ0

ψ0 ∈ H1

ψ(t, x) = (U(t) ∗ ψ0)(x)− i

∫ t

0

αU(t − s, x)ψ(s, 0)ds

U(t, x) =
1√
4πit

e i
x2

4t



1d linear case

Self-adjoint operator Hα

Hα = − d2

dx2
+ αδ0 α ∈ R

D(Hα) =
{
ψ ∈ H2(R\{0}) ∩ H1(R), ψ′(0+)− ψ′(0−) = αψ(0)

}
Hαψ = −ψ′′ ∀x 6= 0

Representation for the unitary group generated by Hα i
d

dt
ψ(t) = Hαψ(t)

ψ(0) = ψ0

ψ0 ∈ H1

ψ(t, x) = (U(t) ∗ ψ0)(x)− i

∫ t

0

αU(t − s, x)ψ(s, 0)ds

U(t, x) =
1√
4πit

e i
x2

4t



1d nonlinear case

The non linear model is defined by posing α→ α(ψ) = γ|ψ(0)|2µ

 i
d

dt
ψ = Hα(ψ)ψ

ψ(0) = ψ0

ψ0 ∈ H1

ψ(t, x) = (U(t) ∗ ψ0)(x)− iγ

∫ t

0

U(t − s, x)|ψ(s, 0)|2µψ(s, 0)ds

E(ψ(t)) =

∫
dx |ψ′(t, x)|2 +

γ

µ+ 1
|ψ(t, 0)|2µ+2

Theorem

This equation has a global solution for ψ0 ∈ H1(R) if γ > 0 and ∀µ > 0 or if
γ < 0 and 0 < µ < 1. Moreover energy is conserved along the solutions.
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Approximating problem

We know that in one dimension

− d

dx2
+

1

ε
V
(x
ε

)
−→ − d

dx2
+ αδ0 α =

∫
V (x)

For ψ0 ∈ H1(R) we define an approximating problem

ψε(t, x) = U(t)ψ0(x)−i
∫ t

0

ds

∫
dy U(t−s, x−y)

1

ε
V
(y
ε

)
|ψε(s, y)|2µψε(s, y)

i
d

dt
ψε(t, x) = −ψε′′(t, x) +

1

ε
V
(x
ε

)
|ψε(t, x)|2µψε(t, x)

Also for the approximating problem energy is conserved

Eε(ψε(t)) =

∫
dx |ψε′(t, x)|2 +

1

µ+ 1

∫
R
dx

1

ε
V
(x
ε

)
|ψε(t, x)|2µ+2
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Main theorem in one dimension

The main result is the following

Theorem

Take V ∈ L1(R, 〈x〉 dx) ∩ L∞(R) and γ =
∫
Vdx . Let V ≥ 0 or µ ∈ (0, 1)

then for any T > 0 we have

lim
ε→0

sup
t∈[0,T ]

‖ψε(t)− ψ(t)‖H1 = 0

under the above hypothesis both the approximating problem and the limit
one have global solutions

notice that the limit problem in the focusing case is global only in the sub
cubical case
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Ideas from the proof

The following a priori estimate is crucial

A priori estimate

Take V ∈ L1(R, 〈x〉 dx) ∩ L∞(R) and let V ≥ 0 or µ ∈ (0, 1) then we have

sup
t∈R
‖ψε(t)‖H1 ≤ c

It is derived from the conservation of energy

Eε(ψε(t)) =

∫
dx |ψε′(t, x)|2 +

1

µ+ 1

∫
R
dx

1

ε
V
(x
ε

)
|ψε(t, x)|2µ+2

Notice that it implies a uniform bound on the L∞ norm
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Ideas from the proof

Since the limit evolution has the form

ψ(t, x) = (U(t) ∗ ψ0)(x)− iγ

∫ t

0

U(t − s, x)|ψ(s, 0)|2µψ(s, 0)ds

the first step is the convergence of ψε(t, 0)

Convergence in the defect

Take V ∈ L1(R, 〈x〉 dx) ∩ L∞(R) and let V ≥ 0 or µ ∈ (0, 1) then for any
T > 0 and 0 < δ < 1/2 we have

sup
t∈(0,T )

|ψε(t, 0)− ψ(t, 0)| ≤ c εδ



Ideas from the proof

As intermediate step we prove convergence in L2(R)

L2-convergence

Take V ∈ L1(R, 〈x〉 dx) ∩ L∞(R) and let V ≥ 0 or µ ∈ (0, 1) then for any
T > 0 and 0 < δ < 1/2 we have

sup
t∈(0,T )

‖ψε(t)− ψ(t)‖L2 ≤ c εδ

The convergence is strengthened to H1 by a soft argument but we lose the
rate.
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Remarks

Some remarks

the proof holds for N defects not just one

nonlocal approximations are also possible

notice that we assume the positivity of V not of γ =
∫
V

we could soften the hypothesis on V


