Schrödinger equation with nonlinear defect as effective model

Domenico Finco

Università Telematica Internazionale Uninettuno
Mathematical Challenges in Quantum Mechanics

February 8-13, 2016, Bressanone

Preliminaries

Joint work with C.Cacciapuoti, D.Noja, A.Teta

Preprint arXiv:1511.06731

Preliminaries

Joint work with C.Cacciapuoti, D.Noja, A.Teta
Preprint arXiv:1511.06731

- The NLS is an ubiquitous equation describing several nonlinear phenomena

Preliminaries

Joint work with C.Cacciapuoti, D.Noja, A.Teta
Preprint arXiv:1511.06731

- The NLS is an ubiquitous equation describing several nonlinear phenomena
- There are simplified models where the nonlinearity is concentrated at point

Preliminaries

Joint work with C.Cacciapuoti, D.Noja, A.Teta

Preprint arXiv:1511.06731

- The NLS is an ubiquitous equation describing several nonlinear phenomena
- There are simplified models where the nonlinearity is concentrated at point
- Widely used in physics for diffraction of electrons from a thin layer, analysis of nonlinear resonant tunneling, models of soliton bifurcation and so on. At a formal level, they correspond to the equation

$$
i \frac{d}{d t} \psi(t)=-\Delta \psi(t)+\gamma \delta_{0}|\psi(t)|^{2 \mu} \psi(t)
$$

Preliminaries

The correct mathematical formulation of the previous equation is given by:

$$
\begin{gathered}
\psi(t, \mathbf{x})=\left(U(t) \psi_{0}\right)(\mathbf{x})+i \int_{0}^{t} U(t-s, \mathbf{x}) q(s) \mathrm{d} s \quad U(t, \mathbf{x})=\frac{\exp \left(i \frac{x^{2}}{4 t}\right)}{(4 \pi i t)^{3 / 2}} \\
q(t)+4 \sqrt{\pi i} \gamma \int_{0}^{t} \frac{|q(s)|^{2 \mu} q(s)}{\sqrt{t-s}} d s=4 \sqrt{\pi i} \int_{0}^{t} \frac{\left(U(s) \psi_{0}\right)(0)}{\sqrt{t-s}} \mathrm{~d} s
\end{gathered}
$$

Preliminaries

The correct mathematical formulation of the previous equation is given by:

$$
\begin{gathered}
\psi(t, \mathbf{x})=\left(U(t) \psi_{0}\right)(\mathbf{x})+i \int_{0}^{t} U(t-s, \mathbf{x}) q(s) \mathrm{d} s \quad U(t, \mathbf{x})=\frac{\exp \left(i \frac{x^{2}}{4 t}\right)}{(4 \pi i t)^{3 / 2}} \\
q(t)+4 \sqrt{\pi i} \gamma \int_{0}^{t} \frac{|q(s)|^{2 \mu} q(s)}{\sqrt{t-s}} d s=4 \sqrt{\pi i} \int_{0}^{t} \frac{\left(U(s) \psi_{0}\right)(0)}{\sqrt{t-s}} \mathrm{~d} s
\end{gathered}
$$

Rigorous analysis concerning existence of dynamics, blow up, orbital stability, asymptotic stability [Adami, Dell'Antonio, Figari, Noja, Ortoleva, Teta,...]

Preliminaries

The correct mathematical formulation of the previous equation is given by:

$$
\begin{gathered}
\psi(t, \mathbf{x})=\left(U(t) \psi_{0}\right)(\mathbf{x})+i \int_{0}^{t} U(t-s, \mathbf{x}) q(s) \mathrm{d} s \quad U(t, \mathbf{x})=\frac{\exp \left(i \frac{x^{2}}{4 t}\right)}{(4 \pi i t)^{3 / 2}} \\
q(t)+4 \sqrt{\pi i} \gamma \int_{0}^{t} \frac{|q(s)|^{2 \mu} q(s)}{\sqrt{t-s}} d s=4 \sqrt{\pi i} \int_{0}^{t} \frac{\left(U(s) \psi_{0}\right)(0)}{\sqrt{t-s}} \mathrm{~d} s
\end{gathered}
$$

Rigorous analysis concerning existence of dynamics, blow up, orbital stability, asymptotic stability [Adami, Dell'Antonio, Figari, Noja, Ortoleva, Teta,...]

Here we discuss the range of application of this equation: how it can be derived as an effective equation from a more fondamental one. We focus on the concentration of the interaction in a single point.

The one dimensional case and the three dimensional case are quite different.

Delta-interaction in dimension three

$$
\begin{gathered}
H_{\alpha}=-\Delta+\alpha \delta_{0} \\
\mathcal{D}\left(H_{\alpha}\right)=\left\{\psi=\phi+\frac{q}{4 \pi|\mathbf{x}|} ; \phi \in \dot{H}^{2}\left(\mathbb{R}^{3}\right) ; q \in \mathbb{C} ; \phi(\mathbf{0})=\alpha \boldsymbol{q}\right\}
\end{gathered}
$$

and

$$
H_{\alpha} \psi=-\Delta \phi \quad \mathbf{x} \neq \mathbf{0}
$$

Delta-interaction in dimension three

$$
\begin{gathered}
H_{\alpha}=-\Delta+\alpha \delta_{0} \\
\mathcal{D}\left(H_{\alpha}\right)=\left\{\psi=\phi+\frac{q}{4 \pi|\mathbf{x}|} ; \phi \in \dot{H}^{2}\left(\mathbb{R}^{3}\right) ; q \in \mathbb{C} ; \phi(\mathbf{0})=\alpha q\right\}
\end{gathered}
$$

and

$$
H_{\alpha} \psi=-\Delta \phi \quad \mathbf{x} \neq \mathbf{0}
$$

The evolution can be represented by

$$
\begin{gathered}
\psi(t, \mathbf{x})=\left(U(t) \psi_{0}\right)(\mathbf{x})+i \int_{0}^{t} U(t-s, \mathbf{x}) q(s) \mathrm{d} s \\
q(t)+4 \sqrt{\pi i} \int_{0}^{t} \frac{\alpha q(s)}{\sqrt{t-s}} \mathrm{~d} s=4 \sqrt{\pi i} \int_{0}^{t} \frac{\left(U(s) \psi_{0}\right)(0)}{\sqrt{t-s}} \mathrm{~d} s
\end{gathered}
$$

Nonlinear case

The nonlinear model is obtained by introducing a nonlinear coupling $\alpha \rightarrow \alpha(\psi)=\gamma|q|^{2 \mu}$

$$
\begin{gathered}
\psi(t, \mathbf{x})=\left(U(t) \psi_{0}\right)(\mathbf{x})+i \int_{0}^{t} U(t-s, \mathbf{x}) q(s) \mathrm{d} s \\
q(t)+4 \sqrt{\pi i \gamma} \int_{0}^{t} \frac{|q(s)|^{2 \mu} q(s)}{\sqrt{t-s}} \mathrm{~d} s=4 \sqrt{\pi i} \int_{0}^{t} \frac{\left(U(s) \psi_{0}\right)(0)}{\sqrt{t-s}} \mathrm{~d} s
\end{gathered}
$$

Nonlinear case

The nonlinear model is obtained by introducing a nonlinear coupling $\alpha \rightarrow \alpha(\psi)=\gamma|q|^{2 \mu}$

$$
\begin{gathered}
\psi(t, \mathbf{x})=\left(U(t) \psi_{0}\right)(\mathbf{x})+i \int_{0}^{t} U(t-s, \mathbf{x}) q(s) \mathrm{d} s \\
q(t)+4 \sqrt{\pi i} \gamma \int_{0}^{t} \frac{|q(s)|^{2 \mu} q(s)}{\sqrt{t-s}} \mathrm{~d} s=4 \sqrt{\pi i} \int_{0}^{t} \frac{\left(U(s) \psi_{0}\right)(0)}{\sqrt{t-s}} \mathrm{~d} s
\end{gathered}
$$

Define

$$
\mathcal{D}=\left\{\psi=\phi+\frac{q}{4 \pi|\mathbf{x}|} ; \phi \in \dot{H}^{2}\left(\mathbb{R}^{3}\right) ; q \in \mathbb{C} ; \phi(\mathbf{0})=\gamma|q|^{2 \mu} q\right\}
$$

Nonlinear case

The nonlinear model is obtained by introducing a nonlinear coupling $\alpha \rightarrow \alpha(\psi)=\gamma|q|^{2 \mu}$

$$
\begin{gathered}
\psi(t, \mathbf{x})=\left(U(t) \psi_{0}\right)(\mathbf{x})+i \int_{0}^{t} U(t-s, \mathbf{x}) q(s) \mathrm{d} s \\
q(t)+4 \sqrt{\pi i} \gamma \int_{0}^{t} \frac{|q(s)|^{2 \mu} q(s)}{\sqrt{t-s}} \mathrm{~d} s=4 \sqrt{\pi i} \int_{0}^{t} \frac{\left(U(s) \psi_{0}\right)(0)}{\sqrt{t-s}} \mathrm{~d} s
\end{gathered}
$$

Define

$$
\mathcal{D}=\left\{\psi=\phi+\frac{q}{4 \pi|\mathbf{x}|} ; \phi \in \dot{H}^{2}\left(\mathbb{R}^{3}\right) ; q \in \mathbb{C} ; \phi(\mathbf{0})=\gamma|\boldsymbol{q}|^{2 \mu} q\right\}
$$

Conserved quantities:

$$
\mathcal{E}(\psi)=\int d x|\nabla \phi|^{2}+\frac{\gamma}{\mu+1}|q|^{2 \mu+2} \quad \mathcal{M}[\psi]=\|\psi\|_{L^{2}}^{2}
$$

The nonlinear model is obtained by introducing a nonlinear coupling $\alpha \rightarrow \alpha(\psi)=\gamma|q|^{2 \mu}$

$$
\begin{gathered}
\psi(t, \mathbf{x})=\left(U(t) \psi_{0}\right)(\mathbf{x})+i \int_{0}^{t} U(t-s, \mathbf{x}) q(s) \mathrm{d} s \\
q(t)+4 \sqrt{\pi i} \gamma \int_{0}^{t} \frac{|q(s)|^{2 \mu} q(s)}{\sqrt{t-s}} \mathrm{~d} s=4 \sqrt{\pi i} \int_{0}^{t} \frac{\left(U(s) \psi_{0}\right)(0)}{\sqrt{t-s}} \mathrm{~d} s
\end{gathered}
$$

Define

$$
\mathcal{D}=\left\{\psi=\phi+\frac{q}{4 \pi|\mathbf{x}|} ; \phi \in \dot{H}^{2}\left(\mathbb{R}^{3}\right) ; q \in \mathbb{C} ; \phi(\mathbf{0})=\gamma|q|^{2 \mu} q\right\}
$$

Conserved quantities:

$$
\mathcal{E}(\psi)=\int d x|\nabla \phi|^{2}+\frac{\gamma}{\mu+1}|q|^{2 \mu+2} \quad \mathcal{M}[\psi]=\|\psi\|_{L^{2}}^{2}
$$

Theorem

Let $\psi_{0} \in \mathcal{D}$, if $\gamma>0$ and $\forall \mu>0$ or if $\gamma<0$ and $0<\mu<1$ then there is a a global solution $\psi \in C([0, T], \mathcal{D}) \cap C^{1}\left([0 . T] . L^{2}\left(\mathbb{R}^{3}\right)\right)$. Moreover energy and mass are conserved along the solutions.

Approximating problem in the linear case

The approximation of a three dimensional delta-interaction is more delicate than the one dimensional case.

$$
-\Delta+\frac{1}{\varepsilon^{3}} V\left(\frac{x}{\varepsilon}\right) \nrightarrow-\Delta+\alpha \delta_{0}
$$

Approximating problem in the linear case

The approximation of a three dimensional delta-interaction is more delicate than the one dimensional case.

$$
-\Delta+\frac{1}{\varepsilon^{3}} V\left(\frac{x}{\varepsilon}\right) \nrightarrow-\Delta+\alpha \delta_{0}
$$

More subtle phenomena are involved: resonant potential for local approximation, renormalization for non local approximation.

$$
H_{\varepsilon}=-\Delta-\beta^{\varepsilon}\left|\rho^{\varepsilon}\right\rangle\left\langle\rho^{\varepsilon}\right| \quad \rho^{\varepsilon}(\mathbf{x})=\frac{1}{\varepsilon^{3}} \rho\left(\frac{\mathbf{x}}{\varepsilon}\right)
$$

Approximating problem in the linear case

The approximation of a three dimensional delta-interaction is more delicate than the one dimensional case.

$$
-\Delta+\frac{1}{\varepsilon^{3}} V\left(\frac{x}{\varepsilon}\right) \nrightarrow-\Delta+\alpha \delta_{0}
$$

More subtle phenomena are involved: resonant potential for local approximation, renormalization for non local approximation.

$$
H_{\varepsilon}=-\Delta-\beta^{\varepsilon}\left|\rho^{\varepsilon}\right\rangle\left\langle\rho^{\varepsilon}\right| \quad \rho^{\varepsilon}(\mathbf{x})=\frac{1}{\varepsilon^{3}} \rho\left(\frac{\mathbf{x}}{\varepsilon}\right)
$$

There is convergence $H_{\varepsilon} \rightarrow H_{\alpha}$ in norm resolvent sense iff

$$
\frac{1}{\beta^{\varepsilon}}=\frac{\ell}{\varepsilon}+\alpha \quad \ell=\int d \mathbf{k} \frac{\hat{\rho}^{2}(\mathbf{k})}{|\mathbf{k}|^{2}}
$$

It relies on a cancellation in an essential way.

Approximating problem in the linear case

The approximation of a three dimensional delta-interaction is more delicate than the one dimensional case.

$$
-\Delta+\frac{1}{\varepsilon^{3}} V\left(\frac{x}{\varepsilon}\right) \nrightarrow-\Delta+\alpha \delta_{0}
$$

More subtle phenomena are involved: resonant potential for local approximation, renormalization for non local approximation.

$$
H_{\varepsilon}=-\Delta-\beta^{\varepsilon}\left|\rho^{\varepsilon}\right\rangle\left\langle\rho^{\varepsilon}\right| \quad \rho^{\varepsilon}(\mathbf{x})=\frac{1}{\varepsilon^{3}} \rho\left(\frac{\mathbf{x}}{\varepsilon}\right)
$$

There is convergence $H_{\varepsilon} \rightarrow H_{\alpha}$ in norm resolvent sense iff

$$
\frac{1}{\beta^{\varepsilon}}=\frac{\ell}{\varepsilon}+\alpha \quad \ell=\int d \mathbf{k} \frac{\hat{\rho}^{2}(\mathbf{k})}{|\mathbf{k}|^{2}}
$$

It relies on a cancellation in an essential way.

$$
H_{\varepsilon}=-\Delta+\frac{\varepsilon}{\ell}\left(-1+\alpha \frac{\varepsilon}{\ell}\right)\left|\rho^{\varepsilon}\right\rangle\left\langle\rho^{\varepsilon}\right|
$$

Approximating problem in the non linear case

The linear case suggest as non local approximation:

$$
i \frac{d}{d t} \psi^{\varepsilon}(t)=-\Delta \psi^{\varepsilon}+\left(-1+\gamma \frac{\varepsilon^{2 \mu+1}\left|\left(\rho^{\varepsilon}, \psi^{\varepsilon}(t)\right)\right|^{2 \mu}}{\ell^{2 \mu+1}}\right) \frac{\varepsilon}{\ell}\left(\rho^{\varepsilon}, \psi^{\varepsilon}(t)\right) \rho^{\varepsilon}
$$

Approximating problem in the non linear case

The linear case suggest as non local approximation:

$$
i \frac{d}{d t} \psi^{\varepsilon}(t)=-\Delta \psi^{\varepsilon}+\left(-1+\gamma \frac{\varepsilon^{2 \mu+1}\left|\left(\rho^{\varepsilon}, \psi^{\varepsilon}(t)\right)\right|^{2 \mu}}{\ell^{2 \mu+1}}\right) \frac{\varepsilon}{\ell}\left(\rho^{\varepsilon}, \psi^{\varepsilon}(t)\right) \rho^{\varepsilon}
$$

For finite ε this is a well behaved NLS on $H^{2}\left(\mathbb{R}^{3}\right)$ while the solutions of the limit equation belongs to \mathcal{D} which has trivial intersection with $H^{2}\left(\mathbb{R}^{3}\right)$.

Approximating problem in the non linear case

The linear case suggest as non local approximation:

$$
i \frac{d}{d t} \psi^{\varepsilon}(t)=-\Delta \psi^{\varepsilon}+\left(-1+\gamma \frac{\varepsilon^{2 \mu+1}\left|\left(\rho^{\varepsilon}, \psi^{\varepsilon}(t)\right)\right|^{2 \mu}}{\ell^{2 \mu+1}}\right) \frac{\varepsilon}{\ell}\left(\rho^{\varepsilon}, \psi^{\varepsilon}(t)\right) \rho^{\varepsilon}
$$

For finite ε this is a well behaved NLS on $H^{2}\left(\mathbb{R}^{3}\right)$ while the solutions of the limit equation belongs to \mathcal{D} which has trivial intersection with $H^{2}\left(\mathbb{R}^{3}\right)$.

Therefore if we want to work with H^{2}-solutions of the approximating problem, we need a smooth initial datum which approximate the initial datum on \mathcal{D} :

$$
\psi_{0}=\phi_{0}+\frac{q_{0}}{4 \pi|\mathbf{x}|} \quad \psi_{0}^{\varepsilon}=\phi_{0}+\frac{q_{0}}{4 \pi}\left(\rho^{\varepsilon} * \frac{1}{|\cdot|}\right)(\mathbf{x})
$$

Approximating problem in the non linear case

The linear case suggest as non local approximation:

$$
i \frac{d}{d t} \psi^{\varepsilon}(t)=-\Delta \psi^{\varepsilon}+\left(-1+\gamma \frac{\varepsilon^{2 \mu+1}\left|\left(\rho^{\varepsilon}, \psi^{\varepsilon}(t)\right)\right|^{2 \mu}}{\ell^{2 \mu+1}}\right) \frac{\varepsilon}{\ell}\left(\rho^{\varepsilon}, \psi^{\varepsilon}(t)\right) \rho^{\varepsilon}
$$

For finite ε this is a well behaved NLS on $H^{2}\left(\mathbb{R}^{3}\right)$ while the solutions of the limit equation belongs to \mathcal{D} which has trivial intersection with $H^{2}\left(\mathbb{R}^{3}\right)$.

Therefore if we want to work with H^{2}-solutions of the approximating problem, we need a smooth initial datum which approximate the initial datum on \mathcal{D} :

$$
\psi_{0}=\phi_{0}+\frac{q_{0}}{4 \pi|\mathbf{x}|} \quad \psi_{0}^{\varepsilon}=\phi_{0}+\frac{q_{0}}{4 \pi}\left(\rho^{\varepsilon} * \frac{1}{|\cdot|}\right)(\mathbf{x})
$$

Moreover it is natural to prove the convergence of ψ^{ε} to ψ in the L^{2}-norm.

Theorem

Let $\psi_{0} \in \mathcal{D}$ and assume $\gamma>0$ or $\gamma<0$ and $0<\mu<1$. Let $\psi(t)$ be the solution of the limit problem and let $\psi^{\varepsilon}(t)$ the solution of the approximating problem with the initial datum as discussed before. Then for any $T>0$ we have

$$
\sup _{t \in[0, T]}\left\|\psi^{\varepsilon}(t)-\psi(t)\right\|_{L^{2}} \leq c \varepsilon^{\delta} \quad 0 \leq \delta<1 / 4
$$

Ideas from the proof

We have to reconstruct the structure of the limit in the approximating problem.

$$
q^{\varepsilon}(t)=\frac{\varepsilon}{\ell}\left(\rho^{\varepsilon}, \psi^{\varepsilon}(t)\right) \quad \phi^{\varepsilon}(t)=\psi^{\varepsilon}(t)-q^{\varepsilon}(t) \rho^{\varepsilon} * \frac{1}{4 \pi|\cdot|}
$$

We have to reconstruct the structure of the limit in the approximating problem.

$$
q^{\varepsilon}(t)=\frac{\varepsilon}{\ell}\left(\rho^{\varepsilon}, \psi^{\varepsilon}(t)\right) \quad \phi^{\varepsilon}(t)=\psi^{\varepsilon}(t)-q^{\varepsilon}(t) \rho^{\varepsilon} * \frac{1}{4 \pi|\cdot|}
$$

The approximating problem takes the form:

$$
\psi^{\varepsilon}(t, \mathbf{x})=\left(U(t) \psi_{0}^{\varepsilon}\right)(\mathbf{x})-i \int_{0}^{t} \mathrm{~d} s U(t-s) \rho^{\varepsilon}(\mathbf{x})\left(-1+\gamma \frac{\varepsilon}{\ell}\left|q^{\varepsilon}(s)\right|^{2 \mu}\right) q^{\varepsilon}(s)
$$

Ideas from the proof

Convergence is reduced to the convergence of initial datum and convergence of charge in a suitable topology

$$
\begin{gathered}
\sup _{t \in[0, T]}\left\|\psi^{\varepsilon}(t)-\psi(t)\right\|_{L^{2}} \leq c\left(\left\|\psi_{0}^{\varepsilon}-\psi_{0}\right\|_{L^{2}}+\left\|I^{1 / 2}\left(q-q^{\varepsilon}\right)\right\|_{L^{\infty}(0, T)}+\varepsilon^{1 / 4}\right) \\
I^{1 / 2} f(t)=\int_{0}^{t} \mathrm{~d} s \frac{f(s)}{\sqrt{t-s}}
\end{gathered}
$$

Ideas from the proof

Convergence is reduced to the convergence of initial datum and convergence of charge in a suitable topology

$$
\begin{gathered}
\sup _{t \in[0, T]}\left\|\psi^{\varepsilon}(t)-\psi(t)\right\|_{L^{2}} \leq c\left(\left\|\psi_{0}^{\varepsilon}-\psi_{0}\right\|_{L^{2}}+\left\|I^{1 / 2}\left(q-q^{\varepsilon}\right)\right\|_{L^{\infty}(0, T)}+\varepsilon^{1 / 4}\right) \\
I^{1 / 2} f(t)=\int_{0}^{t} \mathrm{~d} s \frac{f(s)}{\sqrt{t-s}}
\end{gathered}
$$

An equation for $I^{1 / 2} q$ can be easily derived and we have

$$
I^{1 / 2} q(t)+4 \pi \sqrt{\pi i} \gamma \int_{0}^{t} \mathrm{~d} s|q(s)|^{2 \mu} q(s)=4 \pi \sqrt{\pi i} \gamma \int_{0}^{t} \mathrm{~d} s\left(U(s) \psi_{0}\right)(0)
$$

Ideas from the proof

Convergence is reduced to the convergence of initial datum and convergence of charge in a suitable topology

$$
\begin{gathered}
\sup _{t \in[0, T]}\left\|\psi^{\varepsilon}(t)-\psi(t)\right\|_{L^{2}} \leq c\left(\left\|\psi_{0}^{\varepsilon}-\psi_{0}\right\|_{L^{2}}+\left\|I^{1 / 2}\left(q-q^{\varepsilon}\right)\right\|_{L^{\infty}(0, T)}+\varepsilon^{1 / 4}\right) \\
I^{1 / 2} f(t)=\int_{0}^{t} \mathrm{~d} s \frac{f(s)}{\sqrt{t-s}}
\end{gathered}
$$

An equation for $I^{1 / 2} q$ can be easily derived and we have

$$
I^{1 / 2} q(t)+4 \pi \sqrt{\pi i} \gamma \int_{0}^{t} \mathrm{~d} s|q(s)|^{2 \mu} q(s)=4 \pi \sqrt{\pi i} \gamma \int_{0}^{t} \mathrm{~d} s\left(U(s) \psi_{0}\right)(0)
$$

On the contrary for $I^{1 / 2} q^{\varepsilon}$ we do not obtain a closed equation
$I^{1 / 2} q^{\varepsilon}(t)+4 \pi \sqrt{\pi i} \gamma \int_{0}^{t} \mathrm{~d} s\left|q^{\varepsilon}(s)\right|^{2 \mu} q^{\varepsilon}(s)=4 \pi \sqrt{\pi i} \gamma \int_{0}^{t} \mathrm{~d} s\left(U(s) \psi_{0}\right)(0)+Y^{\varepsilon}(t)$

Ideas from the proof

The source term has the following expression

$$
\begin{gathered}
Y^{\varepsilon}(t)=\sum_{j=1}^{4} Y_{j}^{\varepsilon}(t), \\
Y_{1}^{\varepsilon}(t)=-(4 \pi)^{2} \sqrt{\pi i} \int_{0}^{t} \mathrm{~d} \tau q^{\varepsilon}(\tau) \int_{0}^{\infty} \mathrm{d} k\left((\hat{\rho}(\varepsilon k))^{2}-(\hat{\rho}(0))^{2}\right) e^{-i k^{2}(t-\tau)}, \\
Y_{2}^{\varepsilon}(t)=(4 \pi)^{2} \sqrt{\pi i} \gamma \frac{\varepsilon}{\ell} \int_{0}^{t} \mathrm{~d} \tau\left|q^{\varepsilon}(\tau)\right|^{2 \mu} q^{\varepsilon}(\tau) \int_{0}^{\infty} \mathrm{d} k\left((\hat{\rho}(\varepsilon k))^{2}-(\hat{\rho}(0))^{2}\right) e^{-i k^{2}(t-\tau)}, \\
Y_{3}^{\varepsilon}(t)=\gamma \frac{\varepsilon}{\ell} \int_{0}^{t} \mathrm{~d} \tau \frac{\left|q^{\varepsilon}(\tau)\right|^{2 \mu} q^{\varepsilon}(\tau)}{\sqrt{t-\tau}}, \\
Y_{4}^{\varepsilon}(t)=4 \pi \sqrt{\pi i}\left(\int_{0}^{t} \mathrm{~d} s\left(\rho^{\varepsilon}, U(s) \psi_{0}^{\varepsilon}\right)-\int_{0}^{t} \mathrm{~d} s\left(U(s) \psi_{0}\right)(\mathbf{0})\right) .
\end{gathered}
$$

Ideas from the proof

Starting from

$$
I^{1 / 2}\left(q^{\varepsilon}-q\right)(t)+4 \pi \sqrt{\pi i} \gamma \int_{0}^{t} \mathrm{~d} s\left(\left|q^{\varepsilon}(s)\right|^{2 \mu} q^{\varepsilon}(s)-|q(s)|^{2 \mu} q(s)\right)=Y^{\varepsilon}(t) .
$$

to prove the convergence of $I^{1 / 2} q^{\varepsilon}$ to $I^{1 / 2} q$ it s sufficient to prove the following estimates:

$$
\begin{gathered}
\left\|Y^{\varepsilon}\right\|_{L^{\infty}(0, T)} \leq C \varepsilon^{1 / 2} \\
\left\|D^{1 / 2} Y^{\varepsilon}(t)\right\|_{L^{1}(0, T)} \leq C \varepsilon^{\delta}
\end{gathered}
$$

Starting from

$$
I^{1 / 2}\left(q^{\varepsilon}-q\right)(t)+4 \pi \sqrt{\pi i} \gamma \int_{0}^{t} \mathrm{~d} s\left(\left|q^{\varepsilon}(s)\right|^{2 \mu} q^{\varepsilon}(s)-|q(s)|^{2 \mu} q(s)\right)=Y^{\varepsilon}(t)
$$

to prove the convergence of $I^{1 / 2} q^{\varepsilon}$ to $I^{1 / 2} q$ it s sufficient to prove the following estimates:

$$
\begin{gathered}
\left\|Y^{\varepsilon}\right\|_{L^{\infty}(0, T)} \leq C \varepsilon^{1 / 2} \\
\left\|D^{1 / 2} Y^{\varepsilon}(t)\right\|_{L^{1}(0, T)} \leq C \varepsilon^{\delta}
\end{gathered}
$$

Some a priori estimates are used

$$
\begin{gathered}
\left\|q^{\varepsilon}\right\|_{L^{\infty}} \leq c \quad \sup _{t}\left\|\nabla \phi^{\varepsilon}(t)\right\|_{L^{2}} \leq c \\
\left\|\dot{q}^{\varepsilon}\right\|_{L^{\infty}} \leq c \varepsilon^{-3 / 2} \quad\left\|D^{1 / 2} q^{\varepsilon}\right\|_{L^{1}} \leq c \varepsilon^{-1 / 2+\delta}
\end{gathered}
$$

Notice that the first couple holds only on the same range of parameters where the limit problem has a global solution.

Perspectives

Some perspectives:

Perspectives

Some perspectives:

- 3d nonlocal on form domain: space-time norm

Perspectives

Some perspectives:

- 3d nonlocal on form domain: space-time norm
- 3d local approximation with resonant potential

Perspectives

Some perspectives:

- 3d nonlocal on form domain: space-time norm
- 3d local approximation with resonant potential
- 1d local approximation with singular scaling of resonant potential

1d linear case

Self-adjoint operator \boldsymbol{H}_{α}

$$
\begin{gathered}
H_{\alpha}=-\frac{d^{2}}{d x^{2}}+\alpha \delta_{0} \quad \alpha \in \mathbb{R} \\
\mathcal{D}\left(H_{\alpha}\right)=\left\{\psi \in H^{2}(\mathbb{R} \backslash\{0\}) \cap H^{1}(\mathbb{R}),\right. \\
\left.\psi^{\prime}(0+)-\psi^{\prime}(0-)=\alpha \psi(0)\right\} \\
H_{\alpha} \psi=-\psi^{\prime \prime} \quad \forall x \neq 0
\end{gathered}
$$

1d linear case

Self-adjoint operator \boldsymbol{H}_{α}

$$
\begin{gathered}
H_{\alpha}=-\frac{d^{2}}{d x^{2}}+\alpha \delta_{0} \quad \alpha \in \mathbb{R} \\
\mathcal{D}\left(H_{\alpha}\right)=\left\{\psi \in H^{2}(\mathbb{R} \backslash\{0\}) \cap H^{1}(\mathbb{R}), \psi^{\prime}(0+)-\psi^{\prime}(0-)=\alpha \psi(0)\right\} \\
H_{\alpha} \psi=-\psi^{\prime \prime} \quad \forall x \neq 0
\end{gathered}
$$

Representation for the unitary group generated by H_{α}

$$
\begin{gathered}
\left\{\begin{array}{l}
i \frac{d}{d t} \psi(t)=H_{\alpha} \psi(t) \quad \psi_{0} \in H^{1} \\
\psi(0)=\psi_{0}
\end{array}\right. \\
\psi(t, x)=\left(U(t) * \psi_{0}\right)(x)-i \int_{0}^{t} \alpha U(t-s, x) \psi(s, 0) d s \\
U(t, x)=\frac{1}{\sqrt{4 \pi i t}} e^{i \frac{x^{2}}{4 t}}
\end{gathered}
$$

The non linear model is defined by posing $\alpha \rightarrow \alpha(\psi)=\gamma|\psi(0)|^{2 \mu}$

The non linear model is defined by posing $\alpha \rightarrow \alpha(\psi)=\gamma|\psi(0)|^{2 \mu}$

$$
\begin{gathered}
\left\{\begin{array}{l}
i \frac{d}{d t} \psi=H_{\alpha(\psi)} \psi \quad \psi_{0} \in H^{1} \\
\psi(0)=\psi_{0}
\end{array}\right. \\
\psi(t, x)=\left(U(t) * \psi_{0}\right)(x)-i \gamma \int_{0}^{t} U(t-s, x)|\psi(s, 0)|^{2 \mu} \psi(s, 0) d s
\end{gathered}
$$

The non linear model is defined by posing $\alpha \rightarrow \alpha(\psi)=\gamma|\psi(0)|^{2 \mu}$

$$
\begin{gathered}
\left\{\begin{array}{l}
i \frac{d}{d t} \psi=H_{\alpha(\psi)} \psi \\
\psi(0)=\psi_{0}
\end{array} \quad \psi_{0} \in H^{1}\right. \\
\psi(t, x)=\left(U(t) * \psi_{0}\right)(x)-i \gamma \int_{0}^{t} U(t-s, x)|\psi(s, 0)|^{2 \mu} \psi(s, 0) d s \\
\mathcal{E}(\psi(t))=\int d x\left|\psi^{\prime}(t, x)\right|^{2}+\frac{\gamma}{\mu+1}|\psi(t, 0)|^{2 \mu+2}
\end{gathered}
$$

Theorem

This equation has a global solution for $\psi_{0} \in H^{1}(\mathbb{R})$ if $\gamma>0$ and $\forall \mu>0$ or if $\gamma<0$ and $0<\mu<1$. Moreover energy is conserved along the solutions.

Approximating problem

We know that in one dimension

$$
-\frac{d}{d x^{2}}+\frac{1}{\varepsilon} V\left(\frac{x}{\varepsilon}\right) \longrightarrow-\frac{d}{d x^{2}}+\alpha \delta_{0} \quad \alpha=\int V(x)
$$

Approximating problem

We know that in one dimension

$$
-\frac{d}{d x^{2}}+\frac{1}{\varepsilon} V\left(\frac{x}{\varepsilon}\right) \longrightarrow-\frac{d}{d x^{2}}+\alpha \delta_{0} \quad \alpha=\int V(x)
$$

For $\psi_{0} \in H^{1}(\mathbb{R})$ we define an approximating problem
$\psi^{\varepsilon}(t, x)=U(t) \psi_{0}(x)-i \int_{0}^{t} d s \int d y U(t-s, x-y) \frac{1}{\epsilon} V\left(\frac{y}{\epsilon}\right)\left|\psi^{\varepsilon}(s, y)\right|^{2 \mu} \psi^{\varepsilon}(s, y)$

Approximating problem

We know that in one dimension

$$
-\frac{d}{d x^{2}}+\frac{1}{\varepsilon} V\left(\frac{x}{\varepsilon}\right) \longrightarrow-\frac{d}{d x^{2}}+\alpha \delta_{0} \quad \alpha=\int V(x)
$$

For $\psi_{0} \in H^{1}(\mathbb{R})$ we define an approximating problem

$$
\begin{aligned}
\psi^{\varepsilon}(t, x)= & U(t) \psi_{0}(x)-i \int_{0}^{t} d s \int d y U(t-s, x-y) \frac{1}{\epsilon} V\left(\frac{y}{\epsilon}\right)\left|\psi^{\varepsilon}(s, y)\right|^{2 \mu} \psi^{\varepsilon}(s, y) \\
& i \frac{d}{d t} \psi^{\varepsilon}(t, x)=-\psi^{\varepsilon \prime \prime}(t, x)+\frac{1}{\epsilon} V\left(\frac{x}{\epsilon}\right)\left|\psi^{\varepsilon}(t, x)\right|^{2 \mu} \psi^{\varepsilon}(t, x)
\end{aligned}
$$

Approximating problem

We know that in one dimension

$$
-\frac{d}{d x^{2}}+\frac{1}{\varepsilon} V\left(\frac{x}{\varepsilon}\right) \longrightarrow-\frac{d}{d x^{2}}+\alpha \delta_{0} \quad \alpha=\int V(x)
$$

For $\psi_{0} \in H^{1}(\mathbb{R})$ we define an approximating problem

$$
\begin{aligned}
\psi^{\varepsilon}(t, x)= & U(t) \psi_{0}(x)-i \int_{0}^{t} d s \int d y U(t-s, x-y) \frac{1}{\epsilon} V\left(\frac{y}{\epsilon}\right)\left|\psi^{\varepsilon}(s, y)\right|^{2 \mu} \psi^{\varepsilon}(s, y) \\
& i \frac{d}{d t} \psi^{\varepsilon}(t, x)=-\psi^{\varepsilon \prime \prime}(t, x)+\frac{1}{\epsilon} V\left(\frac{x}{\epsilon}\right)\left|\psi^{\varepsilon}(t, x)\right|^{2 \mu} \psi^{\varepsilon}(t, x)
\end{aligned}
$$

Also for the approximating problem energy is conserved

$$
\mathcal{E}^{\varepsilon}\left(\psi^{\varepsilon}(t)\right)=\int d x\left|\psi^{\varepsilon \prime}(t, x)\right|^{2}+\frac{1}{\mu+1} \int_{\mathbb{R}} d x \frac{1}{\varepsilon} V\left(\frac{x}{\varepsilon}\right)\left|\psi^{\varepsilon}(t, x)\right|^{2 \mu+2}
$$

Main theorem in one dimension

The main result is the following

Theorem

Take $V \in L^{1}(\mathbb{R},\langle x\rangle d x) \cap L^{\infty}(\mathbb{R})$ and $\gamma=\int V d x$. Let $V \geq 0$ or $\mu \in(0,1)$ then for any $T>0$ we have

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in[0, T]}\left\|\psi^{\varepsilon}(t)-\psi(t)\right\|_{H^{1}}=0
$$

The main result is the following

Theorem

Take $V \in L^{1}(\mathbb{R},\langle x\rangle d x) \cap L^{\infty}(\mathbb{R})$ and $\gamma=\int V d x$. Let $V \geq 0$ or $\mu \in(0,1)$ then for any $T>0$ we have

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in[0, T]}\left\|\psi^{\varepsilon}(t)-\psi(t)\right\|_{H^{1}}=0
$$

- under the above hypothesis both the approximating problem and the limit one have global solutions
- notice that the limit problem in the focusing case is global only in the sub cubical case

Ideas from the proof

The following a priori estimate is crucial

A priori estimate

Take $V \in L^{1}(\mathbb{R},\langle x\rangle d x) \cap L^{\infty}(\mathbb{R})$ and let $V \geq 0$ or $\mu \in(0,1)$ then we have

$$
\sup \left\|\psi^{\varepsilon}(t)\right\|_{\mathcal{H}^{1}} \leq c
$$

Ideas from the proof

The following a priori estimate is crucial

A priori estimate

Take $V \in L^{1}(\mathbb{R},\langle x\rangle d x) \cap L^{\infty}(\mathbb{R})$ and let $V \geq 0$ or $\mu \in(0,1)$ then we have

$$
\sup _{t \in \mathbb{R}}\left\|\psi^{\varepsilon}(t)\right\|_{H^{1}} \leq c
$$

It is derived from the conservation of energy

$$
\mathcal{E}^{\varepsilon}\left(\psi^{\varepsilon}(t)\right)=\int d x\left|\psi^{\varepsilon \prime}(t, x)\right|^{2}+\frac{1}{\mu+1} \int_{\mathbb{R}} d x \frac{1}{\varepsilon} V\left(\frac{x}{\varepsilon}\right)\left|\psi^{\varepsilon}(t, x)\right|^{2 \mu+2}
$$

The following a priori estimate is crucial

A priori estimate

Take $V \in L^{1}(\mathbb{R},\langle x\rangle d x) \cap L^{\infty}(\mathbb{R})$ and let $V \geq 0$ or $\mu \in(0,1)$ then we have

$$
\sup _{t \in \mathbb{R}}\left\|\psi^{\varepsilon}(t)\right\|_{H^{1}} \leq c
$$

It is derived from the conservation of energy

$$
\mathcal{E}^{\varepsilon}\left(\psi^{\varepsilon}(t)\right)=\int d x\left|\psi^{\varepsilon \prime}(t, x)\right|^{2}+\frac{1}{\mu+1} \int_{\mathbb{R}} d x \frac{1}{\varepsilon} V\left(\frac{x}{\varepsilon}\right)\left|\psi^{\varepsilon}(t, x)\right|^{2 \mu+2}
$$

Notice that it implies a uniform bound on the L^{∞} norm

Ideas from the proof

Since the limit evolution has the form

$$
\psi(t, x)=\left(U(t) * \psi_{0}\right)(x)-i \gamma \int_{0}^{t} U(t-s, x)|\psi(s, 0)|^{2 \mu} \psi(s, 0) d s
$$

the first step is the convergence of $\psi^{\varepsilon}(t, 0)$

Convergence in the defect

Take $V \in L^{1}(\mathbb{R},\langle x\rangle d x) \cap L^{\infty}(\mathbb{R})$ and let $V \geq 0$ or $\mu \in(0,1)$ then for any $T>0$ and $0<\delta<1 / 2$ we have

$$
\sup _{t \in(0, T)}\left|\psi^{\varepsilon}(t, 0)-\psi(t, 0)\right| \leq c \varepsilon^{\delta}
$$

Ideas from the proof

As intermediate step we prove convergence in $L^{2}(\mathbb{R})$
L^{2}-convergence
Take $V \in L^{1}(\mathbb{R},\langle x\rangle d x) \cap L^{\infty}(\mathbb{R})$ and let $V \geq 0$ or $\mu \in(0,1)$ then for any $T>0$ and $0<\delta<1 / 2$ we have

$$
\sup _{t \in(0, T)}\left\|\psi^{\varepsilon}(t)-\psi(t)\right\|_{L^{2}} \leq c \varepsilon^{\delta}
$$

Ideas from the proof

As intermediate step we prove convergence in $L^{2}(\mathbb{R})$
L^{2}-convergence
Take $V \in L^{1}(\mathbb{R},\langle x\rangle d x) \cap L^{\infty}(\mathbb{R})$ and let $V \geq 0$ or $\mu \in(0,1)$ then for any $T>0$ and $0<\delta<1 / 2$ we have

$$
\sup _{t \in(0, T)}\left\|\psi^{\varepsilon}(t)-\psi(t)\right\|_{L^{2}} \leq c \varepsilon^{\delta}
$$

The convergence is strengthened to H^{1} by a soft argument but we lose the rate.

Remarks

Some remarks

- the proof holds for N defects not just one
- nonlocal approximations are also possible
- notice that we assume the positivity of V not of $\gamma=\int V$
- we could soften the hypothesis on V

