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Schrödinger operators with δ-interactions on
hypersurfaces

Let Σ ⊂ Rd be an (unbounded) C2-hypersurface

α ∈ L∞(Σ) real-valued

aδ,α[f ,g] =
(
∇f ,∇g

)
L2(Rd ,Cd )

−
∫

Σ

αf |Σ g|Σ dσ,

dom aδ,α = H1(Rd )

aδ,α is closed and bounded from below [Brasche, Exner,
Kuperin, Šeba 94]
Representing operator = Aδ,α
It holds for f ∈ dom Aδ,α [Behrndt, Exner, M. Langer,
Lotoreichik 13]:

Aδ,αf = −∆f on Rd \ Σ

αf |Σ =
[
∂ν f |Σ

]
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Construction of the approximating sequence

Assume ∃β > 0 such that

Σ×(−β, β) 3 (xΣ, t) 7→ xΣ + tν(xΣ) ∈ Rd

is injective

Ωβ := {xΣ+tν(xΣ) : xΣ ∈ Σ, t ∈ (−β, β)}

Σ

βν

Choose a real-valued V ∈ L∞(Rd ) with supp V ⊂ Ωβ

Vε(x) =


β
εV
(

xΣ + β
ε tν(xΣ)

)
, x = xΣ + tν(xΣ) with

xΣ ∈ Σ, t ∈ (−ε, ε),

0, otherwise.

−∆− Vε is self-adjoint on H2(Rd )

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 20169



Graz University of Technology

Construction of the approximating sequence

Assume ∃β > 0 such that

Σ×(−β, β) 3 (xΣ, t) 7→ xΣ + tν(xΣ) ∈ Rd

is injective
Ωβ := {xΣ+tν(xΣ) : xΣ ∈ Σ, t ∈ (−β, β)} Σ

βν Ωβ

Choose a real-valued V ∈ L∞(Rd ) with supp V ⊂ Ωβ

Vε(x) =


β
εV
(

xΣ + β
ε tν(xΣ)

)
, x = xΣ + tν(xΣ) with

xΣ ∈ Σ, t ∈ (−ε, ε),

0, otherwise.

−∆− Vε is self-adjoint on H2(Rd )

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 20169



Graz University of Technology

Construction of the approximating sequence

Assume ∃β > 0 such that

Σ×(−β, β) 3 (xΣ, t) 7→ xΣ + tν(xΣ) ∈ Rd

is injective
Ωβ := {xΣ+tν(xΣ) : xΣ ∈ Σ, t ∈ (−β, β)} Σ

βν Ωβ

Choose a real-valued V ∈ L∞(Rd ) with supp V ⊂ Ωβ

Vε(x) =


β
εV
(

xΣ + β
ε tν(xΣ)

)
, x = xΣ + tν(xΣ) with

xΣ ∈ Σ, t ∈ (−ε, ε),

0, otherwise.

−∆− Vε is self-adjoint on H2(Rd )

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 20169



Graz University of Technology

Construction of the approximating sequence

Assume ∃β > 0 such that

Σ×(−β, β) 3 (xΣ, t) 7→ xΣ + tν(xΣ) ∈ Rd

is injective
Ωβ := {xΣ+tν(xΣ) : xΣ ∈ Σ, t ∈ (−β, β)} Σ

βν Ωβ

Choose a real-valued V ∈ L∞(Rd ) with supp V ⊂ Ωβ

Vε(x) =


β
εV
(

xΣ + β
ε tν(xΣ)

)
, x = xΣ + tν(xΣ) with

xΣ ∈ Σ, t ∈ (−ε, ε),

0, otherwise.

−∆− Vε is self-adjoint on H2(Rd )

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 20169



Graz University of Technology

Construction of the approximating sequence

Assume ∃β > 0 such that

Σ×(−β, β) 3 (xΣ, t) 7→ xΣ + tν(xΣ) ∈ Rd

is injective
Ωβ := {xΣ+tν(xΣ) : xΣ ∈ Σ, t ∈ (−β, β)}

ε = β/4

ε = β/2

ε = β

Choose a real-valued V ∈ L∞(Rd ) with supp V ⊂ Ωβ

Vε(x) =


β
εV
(

xΣ + β
ε tν(xΣ)

)
, x = xΣ + tν(xΣ) with

xΣ ∈ Σ, t ∈ (−ε, ε),

0, otherwise.

−∆− Vε is self-adjoint on H2(Rd )

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 20169



Graz University of Technology

Construction of the approximating sequence

Assume ∃β > 0 such that

Σ×(−β, β) 3 (xΣ, t) 7→ xΣ + tν(xΣ) ∈ Rd

is injective
Ωβ := {xΣ+tν(xΣ) : xΣ ∈ Σ, t ∈ (−β, β)}

ε = β/4

ε = β/2

ε = β

Choose a real-valued V ∈ L∞(Rd ) with supp V ⊂ Ωβ

Vε(x) =


β
εV
(

xΣ + β
ε tν(xΣ)

)
, x = xΣ + tν(xΣ) with

xΣ ∈ Σ, t ∈ (−ε, ε),

0, otherwise.

−∆− Vε is self-adjoint on H2(Rd )

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 20169



Graz University of Technology

Main result

Theorem ([Behrndt, Exner, H., Lotoreichik])

Define α ∈ L∞(Σ) as

α(xΣ) :=

∫ β

−β
V (xΣ + sν(xΣ))ds

f.a.a. xΣ ∈ Σ and let λ� 0. Then there exists c > 0 such that∥∥∥(−∆− Vε − λ)−1 − (Aδ,α − λ)−1
∥∥∥ ≤ cε

(
1 + | ln ε|

)
for all sufficiently small ε > 0. In particular −∆− Vε converge to
Aδ,α in the norm resolvent sense.

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 201610
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J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 201610
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Main result

Theorem ([Behrndt, Exner, H., Lotoreichik])

Define α ∈ L∞(Σ) as

α(xΣ) :=

∫ β

−β
V (xΣ + sν(xΣ))ds

f.a.a. xΣ ∈ Σ and let λ� 0. Then∥∥∥(−∆− Vε − λ)−1 − (Aδ,α − λ)−1
∥∥∥→ 0, ε→ 0+

Corollary

Let Q ∈ L∞(Rd ) be real-valued. Then∥∥∥(−∆− Vε + Q − λ)−1 − (Aδ,α + Q − λ)−1
∥∥∥→ 0, ε→ 0+

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 201610
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Comparison to known results

Point interactions in R,R2 and R3: Albeverio, Gesztesy,
Høegh-Krohn, Holden, Kirsch (80s)

1D: point = hypersurface
Results for δ-interactions on hypersurfaces:

for Q = 0 and restrictions on the space dimension, Σ and α
(Antoine, Gesztesy, Shabani; Shimada, Popov; Exner,
Ichinose, Kondej)
in strong resolvent convergence (Stollmann, Voigt)

New: Aδ,α + Q can be approximated for

general space dimension d ≥ 2
general C2-smooth Σ

arbitrary interaction strength α ∈ L∞(Σ)

any potential Q ∈ L∞(Rd )

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 201611
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Thank you for your attention!

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik,
MCQM, February 12, 201612
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