Approximation of Schrödinger operators with singular interactions supported on hypersurfaces

J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik

TU Graz
AKTION Austria Czech Republic
Mathematical Challenges in Quantum Mechanics, Bressanone, February 12, 2016

Outline

1. Introduction
2. δ-operators and their approximation

Outline

1. Introduction

2. δ-operators and their approximation

Motivation

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
A_{\delta, \alpha}:="-\Delta-\alpha \delta_{\Sigma} "
$$

Motivation

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
A_{\delta, \alpha}:="-\Delta-\alpha \delta_{\Sigma} "
$$

Applications:

- Leaky quantum graphs:
- Description of motion of quantum particle on network of wires

Motivation

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
A_{\delta, \alpha}:="-\Delta-\alpha \delta_{\Sigma} "
$$

Applications:

- Leaky quantum graphs:
- Description of motion of quantum particle on network of wires
- $\alpha>0 \Rightarrow$ motion of particle is confined to Σ

Motivation

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
A_{\delta, \alpha}:="-\Delta-\alpha \delta_{\Sigma} "
$$

Applications:

- Leaky quantum graphs:
- Description of motion of quantum particle on network of wires
- $\alpha>0 \Rightarrow$ motion of particle is confined to Σ
- Quantum tunneling effects are allowed

Motivation

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
A_{\delta, \alpha}:="-\Delta-\alpha \delta_{\Sigma} "
$$

Applications:

- Leaky quantum graphs:
- Description of motion of quantum particle on network of wires
- $\alpha>0 \Rightarrow$ motion of particle is confined to Σ
- Quantum tunneling effects are allowed

Motivation

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
A_{\delta, \alpha}:="-\Delta-\alpha \delta_{\Sigma} "
$$

Applications:

- Leaky quantum graphs
- Many body quantum systems

Motivation

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
A_{\delta, \alpha}:="-\Delta-\alpha \delta_{\Sigma} "
$$

Applications:

- Leaky quantum graphs
- Many body quantum systems
- δ-potentials describe interactions between the particles

Motivation

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
A_{\delta, \alpha}:="-\Delta-\alpha \delta_{\Sigma} "
$$

Applications:

- Leaky quantum graphs
- Many body quantum systems
- Theory of electromagnetic and acoustic waves (photonic crystals)

Motivation

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
A_{\delta, \alpha}:="-\Delta-\alpha \delta_{\Sigma} "
$$

Applications:

- Leaky quantum graphs
- Many body quantum systems
- Theory of electromagnetic and acoustic waves (photonic crystals)
Some names: Albeverio, Behrndt, Brasche, Cacciapuoti, Carlone, Corregi, Dell'Antonio, Exner, Figari, Figotin, Finco, Gesztesy, Griesemer, Holden, Kondej, Kostenko, Kuchment, Kühn, M. Langer, Lotoreichik, Manko, Malamud, Michelangeli, Neidhardt, Nizhnik, Noja, Ourmières-Bonafos, Pankrashkin, Posilicano, Shkalikov, Teta, ...

Problem

In applications:

$$
A_{\delta, \alpha}="-\Delta-\alpha \delta_{\Sigma} " \approx-\Delta-V
$$

where V has large values near Σ and small values else

Problem

In applications:

$$
A_{\delta, \alpha}="-\Delta-\alpha \delta_{\Sigma} " \approx-\Delta-V
$$

where V has large values near Σ and small values else
More precise:

- $\sigma\left(\boldsymbol{A}_{\delta, \alpha}\right) \approx \sigma(-\Delta-V)$

Problem

In applications:

$$
A_{\delta, \alpha}="-\Delta-\alpha \delta_{\Sigma} " \approx-\Delta-V
$$

where V has large values near Σ and small values else
More precise:

- $\sigma\left(A_{\delta, \alpha}\right) \approx \sigma(-\Delta-V)$
- Spectral measure of $A_{\delta, \alpha} \approx$ spectral measure of $-\Delta-V$

Problem

In applications:

$$
A_{\delta, \alpha}="-\Delta-\alpha \delta_{\Sigma} " \approx-\Delta-V
$$

where V has large values near Σ and small values else
More precise:

- $\sigma\left(A_{\delta, \alpha}\right) \approx \sigma(-\Delta-V)$
- Spectral measure of $A_{\delta, \alpha} \approx$ spectral measure of $-\Delta-V$
- $u\left(A_{\delta, \alpha}\right) \approx u(-\Delta-V), u \in C_{b}(\mathbb{R})$

Problem

In applications:

$$
A_{\delta, \alpha}="-\Delta-\alpha \delta_{\Sigma} " \approx-\Delta-V
$$

where V has large values near Σ and small values else
More precise:

- $\sigma\left(A_{\delta, \alpha}\right) \approx \sigma(-\Delta-V)$
- Spectral measure of $A_{\delta, \alpha} \approx$ spectral measure of $-\Delta-V$
- $u\left(A_{\delta, \alpha}\right) \approx u(-\Delta-V), u \in C_{b}(\mathbb{R})$

Questions:

- Are spectral data of $A_{\delta, \alpha}$ and $-\Delta-V$ close to each other?

Problem

In applications:

$$
A_{\delta, \alpha}="-\Delta-\alpha \delta_{\Sigma} " \approx-\Delta-V
$$

where V has large values near Σ and small values else
More precise:

- $\sigma\left(\boldsymbol{A}_{\delta, \alpha}\right) \approx \sigma(-\Delta-V)$
- Spectral measure of $A_{\delta, \alpha} \approx$ spectral measure of $-\Delta-V$
- $u\left(A_{\delta, \alpha}\right) \approx u(-\Delta-V), u \in C_{b}(\mathbb{R})$

Questions:

- Are spectral data of $A_{\delta, \alpha}$ and $-\Delta-V$ close to each other?
- Connection of α and V ?

Problem

In applications:

$$
A_{\delta, \alpha}="-\Delta-\alpha \delta_{\Sigma} " \approx-\Delta-V
$$

where V has large values near Σ and small values else
Questions:

- Are spectral data of $A_{\delta, \alpha}$ and $-\Delta-V$ close to each other?
- Connection of α and V ?

Idea:

- Construct potentials V_{ε} that "approximate" $\alpha \delta_{\Sigma}$

Problem

In applications:

$$
A_{\delta, \alpha}="-\Delta-\alpha \delta_{\Sigma} " \approx-\Delta-V
$$

where V has large values near Σ and small values else
Questions:

- Are spectral data of $A_{\delta, \alpha}$ and $-\Delta-V$ close to each other?
- Connection of α and V ?

Idea:

- Construct potentials V_{ε} that "approximate" $\alpha \delta_{\Sigma}$
- Show that $-\Delta-V_{\varepsilon}$ converge to $A_{\delta, \alpha}$ in suitable sense

Problem

In applications:

$$
A_{\delta, \alpha}="-\Delta-\alpha \delta_{\Sigma} " \approx-\Delta-V
$$

where V has large values near Σ and small values else
Questions:

- Are spectral data of $A_{\delta, \alpha}$ and $-\Delta-V$ close to each other?
- Connection of α and V ?

Idea:

- Construct potentials V_{ε} that "approximate" $\alpha \delta_{\Sigma}$
- Show that $-\Delta-V_{\varepsilon}$ converge to $A_{\delta, \alpha}$ in suitable sense
- Then, spectral data of $A_{\delta, \alpha}$ and $-\Delta-V_{\varepsilon}$ are approximately the same

Outline

1. Introduction

2. δ-operators and their approximation

Schrödinger operators with δ-interactions on hypersurfaces

- Let $\Sigma \subset \mathbb{R}^{d}$ be an (unbounded) C^{2}-hypersurface

Schrödinger operators with δ-interactions on hypersurfaces

- Let $\Sigma \subset \mathbb{R}^{d}$ be an (unbounded) C^{2}-hypersurface
- $\alpha \in L^{\infty}(\Sigma)$ real-valued

Schrödinger operators with δ-interactions on hypersurfaces

- Let $\Sigma \subset \mathbb{R}^{d}$ be an (unbounded) C^{2}-hypersurface
- $\alpha \in L^{\infty}(\Sigma)$ real-valued

$$
\begin{aligned}
\mathfrak{a}_{\delta, \alpha}[f, g] & =(\nabla f, \nabla g)_{L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{d}\right)}-\left.\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma, \\
\operatorname{dom} \mathfrak{a}_{\delta, \alpha} & =H^{1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

Schrödinger operators with δ-interactions on hypersurfaces

- Let $\Sigma \subset \mathbb{R}^{d}$ be an (unbounded) C^{2}-hypersurface
- $\alpha \in L^{\infty}(\Sigma)$ real-valued

$$
\begin{aligned}
\mathfrak{a}_{\delta, \alpha}[f, g] & =(\nabla f, \nabla g)_{L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{d}\right)}-\left.\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma, \\
\operatorname{dom} \mathfrak{a}_{\delta, \alpha} & =H^{1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

- $\mathfrak{a}_{\delta, \alpha}$ is closed and bounded from below [Brasche, Exner, Kuperin, Šeba 94]

Schrödinger operators with δ-interactions on hypersurfaces

- Let $\Sigma \subset \mathbb{R}^{d}$ be an (unbounded) C^{2}-hypersurface
- $\alpha \in L^{\infty}(\Sigma)$ real-valued

$$
\begin{aligned}
\mathfrak{a}_{\delta, \alpha}[f, g] & =(\nabla f, \nabla g)_{L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{d}\right)}-\left.\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma, \\
\operatorname{dom} \mathfrak{a}_{\delta, \alpha} & =H^{1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

- $\mathfrak{a}_{\delta, \alpha}$ is closed and bounded from below [Brasche, Exner, Kuperin, Šeba 94]
- Representing operator $=A_{\delta, \alpha}$

Schrödinger operators with δ-interactions on hypersurfaces

- Let $\Sigma \subset \mathbb{R}^{d}$ be an (unbounded) C^{2}-hypersurface
- $\alpha \in L^{\infty}(\Sigma)$ real-valued

$$
\begin{aligned}
\mathfrak{a}_{\delta, \alpha}[f, g] & =(\nabla f, \nabla g)_{L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{d}\right)}-\left.\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma, \\
\operatorname{dom} \mathfrak{a}_{\delta, \alpha} & =H^{1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

- $\mathfrak{a}_{\delta, \alpha}$ is closed and bounded from below [Brasche, Exner, Kuperin, Šeba 94]
- Representing operator $=A_{\delta, \alpha}$
- It holds for $f \in \operatorname{dom} A_{\delta, \alpha}$ [Behrndt, Exner, M. Langer, Lotoreichik 13]:

$$
\begin{aligned}
A_{\delta, \alpha} f & =-\Delta f \text { on } \quad \mathbb{R}^{d} \backslash \Sigma \\
\left.\alpha f\right|_{\Sigma} & =\left[\left.\partial_{\nu} f\right|_{\Sigma}\right]
\end{aligned}
$$

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that

$$
\Sigma \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}
$$

is injective

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that

$$
\Sigma \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}
$$

is injective

- $\Omega_{\beta}:=\left\{x_{\Sigma}+t \nu\left(x_{\Sigma}\right): x_{\Sigma} \in \Sigma, t \in(-\beta, \beta)\right\}$

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that

$$
\Sigma \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}
$$

is injective

- $\Omega_{\beta}:=\left\{x_{\Sigma}+t \nu\left(x_{\Sigma}\right): x_{\Sigma} \in \Sigma, t \in(-\beta, \beta)\right\}$

- Choose a real-valued $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ with supp $V \subset \Omega_{\beta}$

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that

$$
\Sigma \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}
$$

is injective

- $\Omega_{\beta}:=\left\{x_{\Sigma}+t \nu\left(x_{\Sigma}\right): x_{\Sigma} \in \Sigma, t \in(-\beta, \beta)\right\}$

- Choose a real-valued $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} V \subset \Omega_{\beta}$

$$
V_{\varepsilon}(x)= \begin{cases}\frac{\beta}{\varepsilon} V\left(x_{\Sigma}+\frac{\beta}{\varepsilon} t \nu\left(x_{\Sigma}\right)\right), & x=x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \text { with } \\ & x_{\Sigma} \in \Sigma, t \in(-\varepsilon, \varepsilon), \\ 0, & \text { otherwise }\end{cases}
$$

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that

$$
\Sigma \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}
$$

is injective

- $\Omega_{\beta}:=\left\{x_{\Sigma}+t \nu\left(x_{\Sigma}\right): x_{\Sigma} \in \Sigma, t \in(-\beta, \beta)\right\}$

- Choose a real-valued $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ with supp $V \subset \Omega_{\beta}$

$$
V_{\varepsilon}(x)= \begin{cases}\frac{\beta}{\varepsilon} V\left(x_{\Sigma}+\frac{\beta}{\varepsilon} t \nu\left(x_{\Sigma}\right)\right), & x=x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \text { with } \\ 0, & x_{\Sigma} \in \Sigma, t \in(-\varepsilon, \varepsilon), \\ 0, & \text { otherwise }\end{cases}
$$

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that

$$
\Sigma \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}
$$

is injective

- $\Omega_{\beta}:=\left\{x_{\Sigma}+t \nu\left(x_{\Sigma}\right): x_{\Sigma} \in \Sigma, t \in(-\beta, \beta)\right\}$

- Choose a real-valued $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ with supp $V \subset \Omega_{\beta}$

$$
V_{\varepsilon}(x)= \begin{cases}\frac{\beta}{\varepsilon} V\left(x_{\Sigma}+\frac{\beta}{\varepsilon} t \nu\left(x_{\Sigma}\right)\right), & x=x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \text { with } \\ 0, & x_{\Sigma} \in \Sigma, t \in(-\varepsilon, \varepsilon), \\ 0, & \text { otherwise }\end{cases}
$$

- $-\Delta-V_{\varepsilon}$ is self-adjoint on $H^{2}\left(\mathbb{R}^{d}\right)$

Main result

Theorem ([Behrndt, Exner, H., Lotoreichik])

Define $\alpha \in L^{\infty}(\Sigma)$ as

$$
\alpha\left(x_{\Sigma}\right):=\int_{-\beta}^{\beta} V\left(x_{\Sigma}+\boldsymbol{s} \nu\left(x_{\Sigma}\right)\right) \mathrm{d} \boldsymbol{s}
$$

f.a.a. $x_{\Sigma} \in \Sigma$ and let $\lambda \ll 0$. Then there exists $c>0$ such that

$$
\left\|\left(-\Delta-V_{\varepsilon}-\lambda\right)^{-1}-\left(A_{\delta, \alpha}-\lambda\right)^{-1}\right\| \leq c \varepsilon(1+|\ln \varepsilon|)
$$

for all sufficiently small $\varepsilon>0$. In particular $-\Delta-V_{\varepsilon}$ converge to $A_{\delta, \alpha}$ in the norm resolvent sense.

Main result

Theorem ([Behrndt, Exner, H., Lotoreichik])

Define $\alpha \in L^{\infty}(\Sigma)$ as

$$
\alpha\left(x_{\Sigma}\right):=\int_{-\beta}^{\beta} V\left(x_{\Sigma}+\boldsymbol{s} \nu\left(x_{\Sigma}\right)\right) \mathrm{d} \boldsymbol{s}
$$

f.a.a. $x_{\Sigma} \in \Sigma$ and let $\lambda \ll 0$. Then

$$
\left\|\left(-\Delta-V_{\varepsilon}-\lambda\right)^{-1}-\left(A_{\delta, \alpha}-\lambda\right)^{-1}\right\| \rightarrow 0, \quad \varepsilon \rightarrow 0+
$$

Consequences:

- Explicit expression for α

Main result

Theorem ([Behrndt, Exner, H., Lotoreichik])

Define $\alpha \in L^{\infty}(\Sigma)$ as

$$
\alpha\left(x_{\Sigma}\right):=\int_{-\beta}^{\beta} V\left(x_{\Sigma}+\boldsymbol{s} \nu\left(x_{\Sigma}\right)\right) \mathrm{d} \boldsymbol{s}
$$

f.a.a. $x_{\Sigma} \in \Sigma$ and let $\lambda \ll 0$. Then

$$
\left\|\left(-\Delta-V_{\varepsilon}-\lambda\right)^{-1}-\left(A_{\delta, \alpha}-\lambda\right)^{-1}\right\| \rightarrow 0, \quad \varepsilon \rightarrow 0+
$$

Consequences:

- Explicit expression for α
- $\sigma\left(-\Delta-V_{\varepsilon}\right) \rightarrow \sigma\left(A_{\delta, \alpha}\right)$

Main result

Theorem ([Behrndt, Exner, H., Lotoreichik])

Define $\alpha \in L^{\infty}(\Sigma)$ as

$$
\alpha\left(x_{\Sigma}\right):=\int_{-\beta}^{\beta} V\left(x_{\Sigma}+\boldsymbol{s} \nu\left(x_{\Sigma}\right)\right) \mathrm{d} \boldsymbol{s}
$$

f.a.a. $x_{\Sigma} \in \Sigma$ and let $\lambda \ll 0$. Then

$$
\left\|\left(-\Delta-V_{\varepsilon}-\lambda\right)^{-1}-\left(A_{\delta, \alpha}-\lambda\right)^{-1}\right\| \rightarrow 0, \quad \varepsilon \rightarrow 0+
$$

Consequences:

- Explicit expression for α
- $\sigma\left(-\Delta-V_{\varepsilon}\right) \rightarrow \sigma\left(A_{\delta, \alpha}\right)$
- $E_{\lambda}\left(-\Delta-V_{\varepsilon}\right) \rightarrow E_{\lambda}\left(A_{\delta, \alpha}\right)$ strongly, $E_{\lambda}=$ spectral measure

Main result

Theorem ([Behrndt, Exner, H., Lotoreichik])

Define $\alpha \in L^{\infty}(\Sigma)$ as

$$
\alpha\left(x_{\Sigma}\right):=\int_{-\beta}^{\beta} V\left(x_{\Sigma}+\boldsymbol{s} \nu\left(x_{\Sigma}\right)\right) \mathrm{d} \boldsymbol{s}
$$

f.a.a. $x_{\Sigma} \in \Sigma$ and let $\lambda \ll 0$. Then

$$
\left\|\left(-\Delta-V_{\varepsilon}-\lambda\right)^{-1}-\left(A_{\delta, \alpha}-\lambda\right)^{-1}\right\| \rightarrow 0, \quad \varepsilon \rightarrow 0+
$$

Consequences:

- Explicit expression for α
- $\sigma\left(-\Delta-V_{\varepsilon}\right) \rightarrow \sigma\left(A_{\delta, \alpha}\right)$
- $E_{\lambda}\left(-\Delta-V_{\varepsilon}\right) \rightarrow E_{\lambda}\left(A_{\delta, \alpha}\right)$ strongly, $E_{\lambda}=$ spectral measure
- $u\left(-\Delta-V_{\varepsilon}\right) \rightarrow u\left(A_{\delta, \alpha}\right)$ strongly for any $u \in C_{b}(\mathbb{R})$

Main result

Theorem ([Behrndt, Exner, H., Lotoreichik])

Define $\alpha \in L^{\infty}(\Sigma)$ as

$$
\alpha\left(x_{\Sigma}\right):=\int_{-\beta}^{\beta} V\left(x_{\Sigma}+\boldsymbol{s} \nu\left(x_{\Sigma}\right)\right) \mathrm{d} \boldsymbol{s}
$$

f.a.a. $x_{\Sigma} \in \Sigma$ and let $\lambda \ll 0$. Then

$$
\left\|\left(-\Delta-V_{\varepsilon}-\lambda\right)^{-1}-\left(A_{\delta, \alpha}-\lambda\right)^{-1}\right\| \rightarrow 0, \quad \varepsilon \rightarrow 0+
$$

Corollary

Let $Q \in L^{\infty}\left(\mathbb{R}^{d}\right)$ be real-valued. Then

$$
\left\|\left(-\Delta-V_{\varepsilon}+Q-\lambda\right)^{-1}-\left(A_{\delta, \alpha}+Q-\lambda\right)^{-1}\right\| \rightarrow 0, \quad \varepsilon \rightarrow 0+
$$

Comparison to known results

- Point interactions in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} : Albeverio, Gesztesy, Høegh-Krohn, Holden, Kirsch (80s)

Comparison to known results

- Point interactions in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} : Albeverio, Gesztesy, Høegh-Krohn, Holden, Kirsch (80s)
- 1D: point = hypersurface

Comparison to known results

- Point interactions in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} : Albeverio, Gesztesy, Høegh-Krohn, Holden, Kirsch (80s)
- 1D: point = hypersurface
- Results for δ-interactions on hypersurfaces:

Comparison to known results

- Point interactions in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} : Albeverio, Gesztesy, Høegh-Krohn, Holden, Kirsch (80s)
- 1D: point = hypersurface
- Results for δ-interactions on hypersurfaces:
- for $\boldsymbol{Q}=0$ and restrictions on the space dimension, $\boldsymbol{\Sigma}$ and α (Antoine, Gesztesy, Shabani; Shimada, Popov; Exner, Ichinose, Kondej)

Comparison to known results

- Point interactions in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} : Albeverio, Gesztesy, Høegh-Krohn, Holden, Kirsch (80s)
- 1D: point = hypersurface
- Results for δ-interactions on hypersurfaces:
- for $\boldsymbol{Q}=0$ and restrictions on the space dimension, $\boldsymbol{\Sigma}$ and α (Antoine, Gesztesy, Shabani; Shimada, Popov; Exner, Ichinose, Kondej)
- in strong resolvent convergence (Stollmann, Voigt)

Comparison to known results

- Point interactions in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} : Albeverio, Gesztesy, Høegh-Krohn, Holden, Kirsch (80s)
- 1D: point = hypersurface
- Results for δ-interactions on hypersurfaces:
- for $\boldsymbol{Q}=0$ and restrictions on the space dimension, $\boldsymbol{\Sigma}$ and α (Antoine, Gesztesy, Shabani; Shimada, Popov; Exner, Ichinose, Kondej)
- in strong resolvent convergence (Stollmann, Voigt)

New: $\boldsymbol{A}_{\delta, \alpha}+Q$ can be approximated for

- general space dimension $d \geq 2$

Comparison to known results

- Point interactions in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} : Albeverio, Gesztesy, Høegh-Krohn, Holden, Kirsch (80s)
- 1D: point = hypersurface
- Results for δ-interactions on hypersurfaces:
- for $\boldsymbol{Q}=0$ and restrictions on the space dimension, $\boldsymbol{\Sigma}$ and α (Antoine, Gesztesy, Shabani; Shimada, Popov; Exner, Ichinose, Kondej)
- in strong resolvent convergence (Stollmann, Voigt)

New: $\boldsymbol{A}_{\delta, \alpha}+Q$ can be approximated for

- general space dimension $d \geq 2$
- general C^{2}-smooth Σ

Comparison to known results

- Point interactions in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} : Albeverio, Gesztesy, Høegh-Krohn, Holden, Kirsch (80s)
- 1D: point = hypersurface
- Results for δ-interactions on hypersurfaces:
- for $\boldsymbol{Q}=0$ and restrictions on the space dimension, $\boldsymbol{\Sigma}$ and α (Antoine, Gesztesy, Shabani; Shimada, Popov; Exner, Ichinose, Kondej)
- in strong resolvent convergence (Stollmann, Voigt)

New: $\boldsymbol{A}_{\delta, \alpha}+Q$ can be approximated for

- general space dimension $d \geq 2$
- general C^{2}-smooth Σ
- arbitrary interaction strength $\alpha \in L^{\infty}(\Sigma)$

Comparison to known results

- Point interactions in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} : Albeverio, Gesztesy, Høegh-Krohn, Holden, Kirsch (80s)
- 1D: point = hypersurface
- Results for δ-interactions on hypersurfaces:
- for $\boldsymbol{Q}=0$ and restrictions on the space dimension, $\boldsymbol{\Sigma}$ and α (Antoine, Gesztesy, Shabani; Shimada, Popov; Exner, Ichinose, Kondej)
- in strong resolvent convergence (Stollmann, Voigt)

New: $\boldsymbol{A}_{\delta, \alpha}+Q$ can be approximated for

- general space dimension $d \geq 2$
- general C^{2}-smooth Σ
- arbitrary interaction strength $\alpha \in L^{\infty}(\Sigma)$
- any potential $Q \in L^{\infty}\left(\mathbb{R}^{d}\right)$

Thank you for your attention!

