Essential Spectrum of Singular Matrix Differential Operators

Orif Ibrogimov

Institute of Mathematics
University of Bern, Switzerland

(based on a joint work with P. Siegl and C. Tretter)

February 12, 2016

The Problem \& Motivations

- The operator matrix: $\ln L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$, consider

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right)
$$

with sufficiently smooth $p, q, d: \mathbb{R}_{+} \rightarrow \mathbb{R}, p>0$ and $b, c: \mathbb{R}_{+} \rightarrow \mathbb{C}$.

- The operator matrix: $\ln L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$, consider

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right)
$$

with sufficiently smooth $p, q, d: \mathbb{R}_{+} \rightarrow \mathbb{R}, p>0$ and $b, c: \mathbb{R}_{+} \rightarrow \mathbb{C}$.

- Goal: explicit description of the essential spectrum of \mathcal{A}.
- The operator matrix: $\ln L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$, consider

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right)
$$

with sufficiently smooth $p, q, d: \mathbb{R}_{+} \rightarrow \mathbb{R}, p>0$ and $b, c: \mathbb{R}_{+} \rightarrow \mathbb{C}$.

- Goal: explicit description of the essential spectrum of \mathcal{A}.
- $T: \mathcal{H} \rightarrow \mathcal{H}$ is called Fredholm if it has closed range, finite-dimensional kernel and finite-dimensional co-kernel.
- The operator matrix: $\ln L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$, consider

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right)
$$

with sufficiently smooth $p, q, d: \mathbb{R}_{+} \rightarrow \mathbb{R}, p>0$ and $b, c: \mathbb{R}_{+} \rightarrow \mathbb{C}$.

- Goal: explicit description of the essential spectrum of \mathcal{A}.
- $T: \mathcal{H} \rightarrow \mathcal{H}$ is called Fredholm if it has closed range, finite-dimensional kernel and finite-dimensional co-kernel. Define

$$
\sigma_{\text {ess }}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Fredholm }\}
$$

- The operator matrix: $\ln L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$, consider

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right)
$$

with sufficiently smooth $p, q, d: \mathbb{R}_{+} \rightarrow \mathbb{R}, p>0$ and $b, c: \mathbb{R}_{+} \rightarrow \mathbb{C}$.

- Goal: explicit description of the essential spectrum of \mathcal{A}.
- $T: \mathcal{H} \rightarrow \mathcal{H}$ is called Fredholm if it has closed range, finite-dimensional kernel and finite-dimensional co-kernel. Define

$$
\sigma_{\text {ess }}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Fredholm }\}
$$

- Singular MDOs and related spectral problems are ubiquitous e.g. in stability problems of magnetohydrodynamics, fluid dynamics and astrophysics.

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\mathcal{A}_{m}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \quad \text { in } \quad L^{2}(-m, m)
$$

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\begin{aligned}
& \mathcal{A}_{m}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \quad \text { in } \quad L^{2}(-m, m) \\
& \sigma_{\mathrm{ess}}\left(\mathcal{A}_{m}\right)=\emptyset!
\end{aligned}
$$

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}
\end{array}\right) \quad \text { in } \quad L^{2}(-m, m) \oplus L^{2}(-m, m)
$$

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}
\end{array}\right) \quad \text { in } \quad L^{2}(-m, m) \oplus L^{2}(-m, m)
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\emptyset$?

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}
\end{array}\right) \quad \text { in } \quad L^{2}(-m, m) \oplus L^{2}(-m, m)
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\emptyset$? No! Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}
\end{array}\right) \quad \text { in } \quad L^{2}(-m, m) \oplus L^{2}(-m, m)
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\emptyset$? No! Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-\frac{x^{2}}{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =
\end{aligned}
$$

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}
\end{array}\right) \quad \text { in } \quad L^{2}(-m, m) \oplus L^{2}(-m, m)
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\emptyset$? No! Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-\frac{x^{2}}{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-\frac{x^{2}}{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}
\end{array}\right) \quad \text { in } \quad L^{2}(-m, m) \oplus L^{2}(-m, m)
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\emptyset$? No! Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-\frac{x^{2}}{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-\frac{x^{2}}{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\Delta([-m, m])=\left[\mathrm{e}^{-m^{2} / 2}-1,0\right]$

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}
\end{array}\right) \quad \text { in } \quad L^{2}(-m, m) \oplus L^{2}(-m, m)
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\emptyset$? No! Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-\frac{x^{2}}{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-\frac{x^{2}}{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\Delta([-m, m])=\left[\mathrm{e}^{-m^{2} / 2}-1,0\right]$

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}
\end{array}\right) \quad \text { in } \quad L^{2}(-m, m) \oplus L^{2}(-m, m)
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\emptyset$? No! Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-\frac{x^{2}}{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-\frac{x^{2}}{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\Delta([-m, m])=\left[\mathrm{e}^{-m^{2} / 2}-1,0\right]$
- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)$?

Simple example

Example. Consider, for $m \in \mathbb{N}$,

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}
\end{array}\right) \quad \text { in } \quad L^{2}(-m, m) \oplus L^{2}(-m, m)
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\emptyset$? No! Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{d x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-\frac{x^{2}}{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-\frac{x^{2}}{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\Delta([-m, m])=\left[\mathrm{e}^{-m^{2} / 2}-1,0\right]$

Ref: [Atkinson et al. (1994)]

- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)$? Maybe $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)=\operatorname{cl}\left\{\bigcup_{m \in \mathbb{N}} \sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)\right\}=[-1,0]$?
- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)$ can be calculated explicitly since the entries have (asymptotically) constant coefficients.
- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)$ can be calculated explicitly since the entries have (asymptotically) constant coefficients.
- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)=\sigma_{\text {ess }}(\mathcal{B})$, where

$$
\mathcal{B}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{dx} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & 0
\end{array}\right)
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)$ can be calculated explicitly since the entries have (asymptotically) constant coefficients.
- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)=\sigma_{\text {ess }}(\mathcal{B})$, where

$$
\mathcal{B}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & 0
\end{array}\right)
$$

- For $\sigma_{\text {ess }}(\mathcal{B})$, look at the symbol

$$
\left(\begin{array}{cc}
\xi^{2} & -\mathrm{i} \xi \\
\mathrm{i} \xi & 0
\end{array}\right), \quad \lambda_{ \pm}(\xi)=\frac{\xi^{2} \pm \sqrt{\xi^{4}+4 \xi^{2}}}{2}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)$ can be calculated explicitly since the entries have (asymptotically) constant coefficients.
- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)=\sigma_{\text {ess }}(\mathcal{B})$, where

$$
\mathcal{B}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & 0
\end{array}\right)
$$

- For $\sigma_{\text {ess }}(\mathcal{B})$, look at the symbol

$$
\begin{gathered}
\left(\begin{array}{cc}
\xi^{2} & -\mathrm{i} \xi \\
\mathrm{i} \xi & 0
\end{array}\right), \quad \lambda_{ \pm}(\xi)=\frac{\xi^{2} \pm \sqrt{\xi^{4}+4 \xi^{2}}}{2} \\
\sigma_{\mathrm{ess}}(\mathcal{B})=\operatorname{cl}\left\{\lambda_{ \pm}(\xi): \xi \in \mathbb{R}\right\}=[-1,0] \cup(0, \infty)
\end{gathered}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)$ can be calculated explicitly since the entries have (asymptotically) constant coefficients.
- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)=\sigma_{\text {ess }}(\mathcal{B})$, where

$$
\mathcal{B}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & 0
\end{array}\right)
$$

- For $\sigma_{\text {ess }}(\mathcal{B})$, look at the symbol

$$
\left(\begin{array}{cc}
\xi^{2} & -\mathrm{i} \xi \\
\mathrm{i} \xi & 0
\end{array}\right), \quad \lambda_{ \pm}(\xi)=\frac{\xi^{2} \pm \sqrt{\xi^{4}+4 \xi^{2}}}{2}
$$

$$
\sigma_{\mathrm{ess}}(\mathcal{B})=\operatorname{cl}\left\{\lambda_{ \pm}(\xi): \xi \in \mathbb{R}\right\}=[-1,0] \cup(0, \infty)=: \sigma_{\mathrm{ess}}^{\mathrm{r}}\left(\mathcal{A}_{\infty}\right) \cup \sigma_{\mathrm{ess}}^{\mathrm{s}}\left(\mathcal{A}_{\infty}\right)
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)$ can be calculated explicitly since the entries have (asymptotically) constant coefficients.
- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)=\sigma_{\text {ess }}(\mathcal{B})$, where

$$
\mathcal{B}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & 0
\end{array}\right)
$$

- For $\sigma_{\text {ess }}(\mathcal{B})$, look at the symbol

$$
\left(\begin{array}{cc}
\xi^{2} & -\mathrm{i} \xi \\
\mathrm{i} \xi & 0
\end{array}\right), \quad \lambda_{ \pm}(\xi)=\frac{\xi^{2} \pm \sqrt{\xi^{4}+4 \xi^{2}}}{2}
$$

$$
\sigma_{\text {ess }}(\mathcal{B})=\operatorname{cl}\left\{\lambda_{ \pm}(\xi): \xi \in \mathbb{R}\right\}=[-1,0] \cup(0, \infty)=: \sigma_{\text {ess }}^{\mathrm{r}}\left(\mathcal{A}_{\infty}\right) \cup \sigma_{\text {ess }}^{\mathrm{s}}\left(\mathcal{A}_{\infty}\right) .
$$

Descloux - Geymonat conjecture ' 80

the appearance of the singular part in a model of magnetohydrodynamics

- Mathematically rigorous treatments of such problems were carried out during 1980-2011 by several authors including Adamyan, Chen, Descloux, Geymonat, Grubb, Hardt, Kako, Konstantinov, Kurasov, H. Langer, Lifshitz, Mennicken, Möller, Naboko, Qi, Raikov, Shkalikov, Tretter.
- Mathematically rigorous treatments of such problems were carried out during 1980-2011 by several authors including Adamyan, Chen, Descloux, Geymonat, Grubb, Hardt, Kako, Konstantinov, Kurasov, H. Langer, Lifshitz, Mennicken, Möller, Naboko, Qi, Raikov, Shkalikov, Tretter.
- Study of singular MDOs has started around 2000. Mostly special models with almost symmetric matrices of ordinary differential operators considered.
- Mathematically rigorous treatments of such problems were carried out during 1980-2011 by several authors including Adamyan, Chen, Descloux, Geymonat, Grubb, Hardt, Kako, Konstantinov, Kurasov, H. Langer, Lifshitz, Mennicken, Möller, Naboko, Qi, Raikov, Shkalikov, Tretter.
- Study of singular MDOs has started around 2000. Mostly special models with almost symmetric matrices of ordinary differential operators considered.
- There were lack of the (comprehensive) analysis of the essential spectrum - in the general symmetric case.
- in the non-symmetric case
- in higher dimensions
- Mathematically rigorous treatments of such problems were carried out during 1980-2011 by several authors including Adamyan, Chen, Descloux, Geymonat, Grubb, Hardt, Kako, Konstantinov, Kurasov, H. Langer, Lifshitz, Mennicken, Möller, Naboko, Qi, Raikov, Shkalikov, Tretter.
- Study of singular MDOs has started around 2000. Mostly special models with almost symmetric matrices of ordinary differential operators considered.
- There were lack of the (comprehensive) analysis of the essential spectrum
- in the general symmetric case.
- in the non-symmetric case
- in higher dimensions

Open questions

Is it true that

- the singular part is always present if the Schur complement is in limit-point case at singular end-point?
- Mathematically rigorous treatments of such problems were carried out during 1980-2011 by several authors including Adamyan, Chen, Descloux, Geymonat, Grubb, Hardt, Kako, Konstantinov, Kurasov, H. Langer, Lifshitz, Mennicken, Möller, Naboko, Qi, Raikov, Shkalikov, Tretter.
- Study of singular MDOs has started around 2000. Mostly special models with almost symmetric matrices of ordinary differential operators considered.
- There were lack of the (comprehensive) analysis of the essential spectrum
- in the general symmetric case.
- in the non-symmetric case
- in higher dimensions

Open questions

Is it true that

- the singular part is always present if the Schur complement is in limit-point case at singular end-point?
- the regular and singular parts are always adjoined to each other?

Main tools

- The first Schur complement associated to

$$
\mathcal{A}-\lambda=\left(\begin{array}{cc}
A-\lambda & B \\
C & D-\lambda
\end{array}\right)
$$

is given by

$$
S(\lambda)=A-\lambda-B(D-\lambda)^{-1} C, \quad \lambda \notin \sigma(D) .
$$

Main tools

- The first Schur complement associated to

$$
\mathcal{A}-\lambda=\left(\begin{array}{cc}
A-\lambda & B \\
C & D-\lambda
\end{array}\right)
$$

is given by

$$
S(\lambda)=A-\lambda-B(D-\lambda)^{-1} C, \quad \lambda \notin \sigma(D) .
$$

Frobenius-Schur factorization:

$$
\mathcal{A}-\lambda=\left(\begin{array}{cc}
I & B(D-\lambda)^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
S(\lambda) & 0 \\
0 & D-\lambda
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
(D-\lambda)^{-1} C & 1
\end{array}\right) .
$$

Main tools

- The first Schur complement associated to

$$
\mathcal{A}-\lambda=\left(\begin{array}{cc}
A-\lambda & B \\
C & D-\lambda
\end{array}\right)
$$

is given by

$$
S(\lambda)=A-\lambda-B(D-\lambda)^{-1} C, \quad \lambda \notin \sigma(D) .
$$

Frobenius-Schur factorization:

$$
\mathcal{A}-\lambda=\left(\begin{array}{cc}
I & B(D-\lambda)^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
S(\lambda) & 0 \\
0 & D-\lambda
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
(D-\lambda)^{-1} C & 1
\end{array}\right) .
$$

- Essential spectrum in the scalar case: Consider in $L^{2}\left(\mathbb{R}_{+}\right)$,

$$
T=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+a_{1}(x) \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}+a_{0}(x),
$$

$a_{j}: \mathbb{R}_{+} \rightarrow \mathbb{C}$ are smooth, regular

Main tools

- The first Schur complement associated to

$$
\mathcal{A}-\lambda=\left(\begin{array}{cc}
A-\lambda & B \\
C & D-\lambda
\end{array}\right)
$$

is given by

$$
S(\lambda)=A-\lambda-B(D-\lambda)^{-1} C, \quad \lambda \notin \sigma(D) .
$$

Frobenius-Schur factorization:

$$
\mathcal{A}-\lambda=\left(\begin{array}{cc}
I & B(D-\lambda)^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
S(\lambda) & 0 \\
0 & D-\lambda
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
(D-\lambda)^{-1} C & 1
\end{array}\right) .
$$

- Essential spectrum in the scalar case: Consider in $L^{2}\left(\mathbb{R}_{+}\right)$,

$$
T=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+a_{1}(x) \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}+a_{0}(x),
$$

$a_{j}: \mathbb{R}_{+} \rightarrow \mathbb{C}$ are smooth, regular, and $\lim _{x \rightarrow \infty} a_{j}(x)=c_{j} \in \mathbb{R}, \quad(j=0,1)$

Main tools

- The first Schur complement associated to

$$
\mathcal{A}-\lambda=\left(\begin{array}{cc}
A-\lambda & B \\
C & D-\lambda
\end{array}\right)
$$

is given by

$$
S(\lambda)=A-\lambda-B(D-\lambda)^{-1} C, \quad \lambda \notin \sigma(D) .
$$

Frobenius-Schur factorization:

$$
\mathcal{A}-\lambda=\left(\begin{array}{cc}
I & B(D-\lambda)^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
S(\lambda) & 0 \\
0 & D-\lambda
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
(D-\lambda)^{-1} C & 1
\end{array}\right) .
$$

- Essential spectrum in the scalar case: Consider in $L^{2}\left(\mathbb{R}_{+}\right)$,

$$
T=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+a_{1}(x) \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}+a_{0}(x),
$$

$a_{j}: \mathbb{R}_{+} \rightarrow \mathbb{C}$ are smooth, regular, and $\lim _{x \rightarrow \infty} a_{j}(x)=c_{j} \in \mathbb{R}, \quad(j=0,1)$

$$
\sigma_{\text {ess }}(T)=\left\{\xi^{2}+c_{1} \xi+c_{0}: \xi \in \mathbb{R}\right\}
$$

Recall

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right)
$$

Recall

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right)
$$

- $\operatorname{det}(\mathcal{A}-\lambda)=-(\Delta(t)-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+$ "lower order terms", where

$$
\Delta(t):=d(t)-\frac{|b(t)|^{2}}{p(t)}, \quad t \in[0, \infty)
$$

Recall

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right)
$$

- $\operatorname{det}(\mathcal{A}-\lambda)=-(\Delta(t)-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+$ "lower order terms", where

$$
\Delta(t):=d(t)-\frac{|b(t)|^{2}}{p(t)}, \quad t \in[0, \infty)
$$

- The Schur complement is given by, for $\lambda \in \mathbb{C} \backslash \sigma(d)$,

$$
S(\lambda)=:-\pi(\cdot, \lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+\rho(\cdot, \lambda) \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}+\kappa(\cdot, \lambda),
$$

where

Recall

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right)
$$

- $\operatorname{det}(\mathcal{A}-\lambda)=-(\Delta(t)-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+$ "lower order terms", where

$$
\Delta(t):=d(t)-\frac{|b(t)|^{2}}{p(t)}, \quad t \in[0, \infty)
$$

- The Schur complement is given by, for $\lambda \in \mathbb{C} \backslash \sigma(d)$,

$$
S(\lambda)=:-\pi(\cdot, \lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+\rho(\cdot, \lambda) \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}+\kappa(\cdot, \lambda),
$$

where

$$
\begin{aligned}
& \pi(\cdot, \lambda):=p-\frac{\left|b^{2}\right|}{d-\lambda}, \quad \rho(\cdot, \lambda):=-\frac{2 \operatorname{lm}(b \bar{c})}{d-\lambda}+\mathrm{i} \frac{\partial}{\partial t} \pi(\cdot, \lambda) \\
& \kappa(\cdot, \lambda):=q-\lambda-\frac{|c|^{2}}{d-\lambda}+\frac{\partial}{\partial t} \operatorname{Re}\left(\frac{\bar{b} c}{d-\lambda}\right)
\end{aligned}
$$

The strategy:

(1) describe the regular part $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})$ using the result of [Atkinson et al. (1994)] and a decomposition principle

The strategy:

(1) describe the regular part $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})$ using the result of [Atkinson et al. (1994)] and a decomposition principle

- for any $t_{0}>0$, the operator \mathcal{A} in $L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$is a finite-dimensional extension of the orthogonal sum $\mathcal{A}_{\left(0, t_{0}\right)} \oplus \mathcal{A}_{\left(t_{0}, \infty\right)}$, so

The strategy:

(1) describe the regular part $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})$ using the result of [Atkinson et al. (1994)] and a decomposition principle

- for any $t_{0}>0$, the operator \mathcal{A} in $L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$is a finite-dimensional extension of the orthogonal sum $\mathcal{A}_{\left(0, t_{0}\right)} \oplus \mathcal{A}_{\left(t_{0}, \infty\right)}$, so

$$
\sigma_{\text {ess }}(\mathcal{A})=\sigma_{\text {ess }}\left(\mathcal{A}_{\left(0, t_{0}\right)}\right) \cup \sigma_{\text {ess }}\left(\mathcal{A}_{\left(t_{0}, \infty\right)}\right) .
$$

The strategy:

(1) describe the regular part $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})$ using the result of [Atkinson et al. (1994)] and a decomposition principle

- for any $t_{0}>0$, the operator \mathcal{A} in $L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$is a finite-dimensional extension of the orthogonal sum $\mathcal{A}_{\left(0, t_{0}\right)} \oplus \mathcal{A}_{\left(t_{0}, \infty\right)}$, so

$$
\sigma_{\mathrm{ess}}(\mathcal{A})=\underbrace{\sigma_{\mathrm{ess}}\left(\mathcal{A}_{\left(0, t_{0}\right)}\right)}_{=\Delta\left(\left[0, t_{0}\right]\right)} \cup \sigma_{\mathrm{ess}}\left(\mathcal{A}_{\left(t_{0}, \infty\right)}\right)
$$

The strategy:

(1) describe the regular part $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})$ using the result of [Atkinson et al. (1994)] and a decomposition principle

- for any $t_{0}>0$, the operator \mathcal{A} in $L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$is a finite-dimensional extension of the orthogonal sum $\mathcal{A}_{\left(0, t_{0}\right)} \oplus \mathcal{A}_{\left(t_{0}, \infty\right)}$, so

$$
\sigma_{\mathrm{ess}}(\mathcal{A})=\underbrace{\sigma_{\mathrm{ess}}\left(\mathcal{A}_{\left(0, t_{0}\right)}\right)}_{=\Delta\left(\left[0, t_{0}\right]\right)} \cup \sigma_{\mathrm{ess}}\left(\mathcal{A}_{\left(t_{0}, \infty\right)}\right) .
$$

(2) for all λ outside of $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\{\Delta(\mathbb{R})\}$ and an exceptional set $\Lambda_{\infty}(d)$, establish

$$
\lambda \in \sigma_{\mathrm{ess}}(\mathcal{A}) \quad \Longleftrightarrow \quad 0 \in \sigma_{\mathrm{ess}}(S(\lambda))
$$

The strategy:

(1) describe the regular part $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})$ using the result of [Atkinson et al. (1994)] and a decomposition principle

- for any $t_{0}>0$, the operator \mathcal{A} in $L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$is a finite-dimensional extension of the orthogonal sum $\mathcal{A}_{\left(0, t_{0}\right)} \oplus \mathcal{A}_{\left(t_{0}, \infty\right)}$, so

$$
\sigma_{\mathrm{ess}}(\mathcal{A})=\underbrace{\sigma_{\mathrm{ess}}\left(\mathcal{A}_{\left(0, t_{0}\right)}\right)}_{=\Delta\left(\left[0, t_{0}\right]\right)} \cup \sigma_{\mathrm{ess}}\left(\mathcal{A}_{\left(t_{0}, \infty\right)}\right) .
$$

(2) for all λ outside of $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\{\Delta(\mathbb{R})\}$ and an exceptional set $\Lambda_{\infty}(d)$, establish

$$
\lambda \in \sigma_{\mathrm{ess}}(\mathcal{A}) \quad \Longleftrightarrow \quad 0 \in \sigma_{\mathrm{ess}}(S(\lambda))
$$

(3) characterize $0 \in \sigma_{\text {ess }}(S(\lambda))$ using the explicit description of the essential spectrum in the scalar case.

The strategy:

(1) describe the regular part $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})$ using the result of [Atkinson et al. (1994)] and a decomposition principle

- for any $t_{0}>0$, the operator \mathcal{A} in $L^{2}\left(\mathbb{R}_{+}\right) \oplus L^{2}\left(\mathbb{R}_{+}\right)$is a finite-dimensional extension of the orthogonal sum $\mathcal{A}_{\left(0, t_{0}\right)} \oplus \mathcal{A}_{\left(t_{0}, \infty\right)}$, so

$$
\sigma_{\mathrm{ess}}(\mathcal{A})=\underbrace{\sigma_{\mathrm{ess}}\left(\mathcal{A}_{\left(0, t_{0}\right)}\right)}_{=\Delta\left(\left[0, t_{0}\right]\right)} \cup \sigma_{\mathrm{ess}}\left(\mathcal{A}_{\left(t_{0}, \infty\right)}\right) .
$$

(2) for all λ outside of $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\{\Delta(\mathbb{R})\}$ and an exceptional set $\Lambda_{\infty}(d)$, establish

$$
\lambda \in \sigma_{\mathrm{ess}}(\mathcal{A}) \quad \Longleftrightarrow \quad 0 \in \sigma_{\mathrm{ess}}(S(\lambda))
$$

(3) characterize $0 \in \sigma_{\text {ess }}(S(\lambda))$ using the explicit description of the essential spectrum in the scalar case.

$$
\begin{aligned}
S(\lambda) & =-\pi(\cdot, \lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+\rho(\cdot, \lambda) \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}+\kappa(\cdot, \lambda) \\
& =\pi(\cdot, \lambda)\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+\frac{\rho(\cdot, \lambda)}{\pi(\cdot, \lambda)} \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}+\frac{\kappa(\cdot, \lambda)}{\pi(\cdot, \lambda)}\right)
\end{aligned}
$$

Theorem (I. - Siegl - Tretter'15)

- $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\{\Delta(\mathbb{R})\}$.

Theorem (I. - Siegl - Tretter'15)

- $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\mathrm{cl}\{\Delta(\mathbb{R})\}$.
- $\lambda \in \sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \Longleftrightarrow\left(\lim _{t \neq \infty} \frac{r(t, \lambda)}{\pi(t, \lambda)}\right)^{2}-\lim _{t \nmid \infty} \frac{\varkappa(t, \lambda)}{\pi(t, \lambda)} \geq 0$.

Theorem (I. - Siegl - Tretter'15)

- $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\{\Delta(\mathbb{R})\}$.
- $\lambda \in \sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \Longleftrightarrow\left(\lim _{t \neq \infty} \frac{r(t, \lambda)}{\pi(t, \lambda)}\right)^{2}-\lim _{t \nmid \infty} \frac{\varkappa(t, \lambda)}{\pi(t, \lambda)} \geq 0$.
- the absence resp. presence of $\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A})$ is characterized in terms of $\pi_{0}(\lambda), \pi_{1}(\lambda)$ in

$$
\pi(t, \lambda)=\pi_{0}(\lambda)+\pi_{1}(\lambda)(t-\beta)+\mathcal{R}(t, \lambda), \quad t \nearrow \beta .
$$

Theorem (I. - Siegl - Tretter'15)

- $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\{\Delta(\mathbb{R})\}$.
- $\lambda \in \sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \Longleftrightarrow\left(\lim _{t \neq \infty} \frac{r(t, \lambda)}{\pi(t, \lambda)}\right)^{2}-\lim _{t \neq \infty} \frac{\varkappa(t, \lambda)}{\pi(t, \lambda)} \geq 0$.
- the absence resp. presence of $\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A})$ is characterized in terms of $\pi_{0}(\lambda), \pi_{1}(\lambda)$ in

$$
\pi(t, \lambda)=\pi_{0}(\lambda)+\pi_{1}(\lambda)(t-\beta)+\mathcal{R}(t, \lambda), \quad t \nearrow \beta .
$$

Theorem (I. - Siegl - Tretter'15)

$$
\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \neq \emptyset \quad \Longleftrightarrow \quad \pi_{0}(\lambda)=\pi_{1}(\lambda)=0 .
$$

Theorem (I. - Siegl - Tretter'15)

- $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\mathrm{cl}\{\Delta(\mathbb{R})\}$.
- $\lambda \in \sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \Longleftrightarrow\left(\lim _{t \neq \infty} \frac{r(t, \lambda)}{\pi(t, \lambda)}\right)^{2}-\lim _{t \neq \infty} \frac{\varkappa(t, \lambda)}{\pi(t, \lambda)} \geq 0$.
- the absence resp. presence of $\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A})$ is characterized in terms of $\pi_{0}(\lambda), \pi_{1}(\lambda)$ in

$$
\pi(t, \lambda)=\pi_{0}(\lambda)+\pi_{1}(\lambda)(t-\beta)+\mathcal{R}(t, \lambda), \quad t \nearrow \beta .
$$

Theorem (I. - Siegl - Tretter'15)

$$
\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \neq \emptyset \quad \Longleftrightarrow \quad \pi_{0}(\lambda)=\pi_{1}(\lambda)=0 .
$$

- earlier works concern special cases of classification in terms of $\pi_{0}(\lambda), \pi_{1}(\lambda)$:
- in Kurasov, Lelyavin, Naboko (2008): $\pi_{0}(\lambda) \neq 0$ or $\pi_{0}(\lambda)=0, \pi_{1}(\lambda) \neq 0$.
- in Kurasov, Naboko (2003): $\quad \pi_{0}(\lambda)=\pi_{1}(\lambda)=0$;
- in Möller (2004): $\quad \pi_{0}(\lambda) \neq 0$;
- in Mennicken, Naboko, Tretter (2002): $\quad \pi_{0}(\lambda)=\pi_{1}(\lambda)=0$.

Application to a spectral problem for symmetric stellar equilibrium models

Application to a spectral problem for symmetric stellar equilibrium models

$$
\text { In } L^{2}(0, R) \oplus L^{2}(0, R) \text {, consider }
$$

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{1} & \frac{\mathrm{~d}}{\mathrm{~d} t} p_{2}+q_{2} \\
-p_{2} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{2} & p_{3}
\end{array}\right)
$$

with coefficient functions

$$
p_{1}:=\frac{\Gamma_{1} p}{\varrho}, \quad p_{2}:=c \frac{\Gamma_{1} p}{t \varrho}, \quad p_{3}:=c^{2} \frac{\Gamma_{1} p}{t^{2} \varrho},
$$

Application to a spectral problem for symmetric stellar equilibrium models

$$
\begin{aligned}
& \text { In } L^{2}(0, R) \oplus L^{2}(0, R) \text {, consider } \\
& \qquad \mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{1} & \frac{\mathrm{~d}}{\mathrm{~d} t} p_{2}+q_{2} \\
-p_{2} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{2} & p_{3}
\end{array}\right)
\end{aligned}
$$

with coefficient functions

$$
p_{1}:=\frac{\Gamma_{1} p}{\varrho}, \quad p_{2}:=c \frac{\Gamma_{1} p}{t \varrho}, \quad p_{3}:=c^{2} \frac{\Gamma_{1} p}{t^{2} \varrho}
$$

- p, q are related to Lane-Emden equation:

$$
\theta^{\prime \prime}(t)+\frac{2}{t} \theta^{\prime}(t)=-\frac{1}{\alpha^{2}} \theta(t)^{n}, \quad t \in(0, \infty)
$$

- R is the first zero of θ.

Application to a spectral problem for symmetric stellar equilibrium models

$$
\begin{aligned}
& \text { In } L^{2}(0, R) \oplus L^{2}(0, R) \text {, consider } \\
& \qquad \mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{1} & \frac{\mathrm{~d}}{\mathrm{~d} t} p_{2}+q_{2} \\
-p_{2} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{2} & p_{3}
\end{array}\right)
\end{aligned}
$$

with coefficient functions

$$
p_{1}:=\frac{\Gamma_{1} p}{\varrho}, \quad p_{2}:=c \frac{\Gamma_{1} p}{t \varrho}, \quad p_{3}:=c^{2} \frac{\Gamma_{1} p}{t^{2} \varrho}
$$

- p, q are related to Lane-Emden equation:

$$
\theta^{\prime \prime}(t)+\frac{2}{t} \theta^{\prime}(t)=-\frac{1}{\alpha^{2}} \theta(t)^{n}, \quad t \in(0, \infty)
$$

- R is the first zero of θ.
- $\sigma_{\text {ess }}(\mathcal{A})=\{0\}$

Comments on further generalizations:

- non-symmetric case

Comments on further generalizations:

- non-symmetric case
- matrix Pseudo-differential operators

Comments on further generalizations:

- non-symmetric case
- matrix Pseudo-differential operators

Reference:

[1] Ibrogimov, O. O., Siegl, P., and Tretter, C.
Analysis of the essential spectrum of singular matrix differential operators,
J. Differential Equations 260 (2016), 3881-3926.
[4] Qi, J., and Chen, Sh.
Essential spectra of singular matrix differential operators of mixed order,
J. Differential Equations, 250 (2011), 4219-4235.
[3] Kurasov, P., Lelyavin, I., and Naboko, S.
On the essential spectrum of a class of singular matrix differential operators. II. Weyl's limit circles for the Hain-Lüst operator whenever quasi-regularity conditions are not satisfied,
Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 109-138.
[2] Atkinson, F. V., Langer H., Mennicken, R., and Shkalikov, A. A.
The essential spectrum of some matrix operators,
Math. Nachr., 167 (1994), 5-20.

Thanks for your attention!

