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The Problem & Motivations

The operator matrix: In L2(R+)⊕ L2(R+) , consider

A =


− d

dt
p

d
dt

+ q − d
dt

b+ c

b
d
dt

+ c d


with sufficiently smooth p, q, d : R+ → R , p > 0 and b, c : R+ → C .

Goal: explicit description of the essential spectrum of A.

T : H → H is called Fredholm if it has closed range, finite-dimensional kernel
and finite-dimensional co-kernel. Define

σess(T ) := {λ ∈ C : T − λ is not Fredholm}

Singular MDOs and related spectral problems are ubiquitous e.g. in stability
problems of magnetohydrodynamics, fluid dynamics and astrophysics.
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Simple example

Example. Consider, for m ∈ N,

Am = − d2

dx2 in L2(−m,m)

σess(Am) = ∅?

No! Look at the formal determinant of Am − λ :

det

 − d2

dx2 − λ − d
dx

d
dx

e−
x2
2 − λ

 =
(
− d2

dx2 − λ
)(

e−
x2
2 − λ

)
−
(
− d

dx

)( d
dx

)

=

−
(
e−

x2
2 − 1︸ ︷︷ ︸

=:∆(x)

−λ
) d2

dx2 + “lower order terms”

σess(Am) = ∆([−m,m]) =
[
e−m2/2 − 1, 0

]
Ref: [Atkinson et al. (1994)]

σess(A∞)? Maybe σess(A∞) = cl
{⋃

m∈N

σess(Am)
}

= [−1, 0] ?
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σess(A∞) can be calculated explicitly since the entries have (asymptotically)
constant coefficients.

σess(A∞) = σess(B), where

B :=

 −
d2

dx2 − d
dx

d
dx

0


For σess(B), look at the symbol ξ2 −iξ

iξ 0

 , λ±(ξ) =
ξ2 ±

√
ξ4 + 4ξ2

2

σess(B) = cl
{
λ±(ξ) : ξ ∈ R

}
= [−1, 0] ∪ (0,∞)

σess(B) = cl
{
λ±(ξ) : ξ ∈ R

}
= [−1, 0] ∪ (0,∞) =: σ r

ess(A∞) ∪ σ s
ess(A∞).

Descloux - Geymonat conjecture ’80

the appearance of the singular part in a model of magnetohydrodynamics
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Mathematically rigorous treatments of such problems were carried out during
1980-2011 by several authors including Adamyan, Chen, Descloux, Geymonat,
Grubb, Hardt, Kako, Konstantinov, Kurasov, H. Langer, Lifshitz, Mennicken,
Möller, Naboko, Qi, Raikov, Shkalikov, Tretter.

Study of singular MDOs has started around 2000. Mostly special models with
almost symmetric matrices of ordinary differential operators considered.

There were lack of the (comprehensive) analysis of the essential spectrum

– in the general symmetric case.

– in the non-symmetric case

– in higher dimensions

Open questions

Is it true that

the singular part is always present if the Schur complement is in limit-point case
at singular end-point?

the regular and singular parts are always adjoined to each other?
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Main tools

The first Schur complement associated to

A− λ =

(
A− λ B

C D − λ

)
is given by

S(λ) = A− λ− B(D − λ)−1C, λ /∈ σ(D).

Frobenius-Schur factorization:

A− λ =

(
I B(D − λ)−1

0 I

)(
S(λ) 0

0 D − λ

)(
I 0

(D − λ)−1C I

)
.

Essential spectrum in the scalar case: Consider in L2(R+),

T = − d2

dx2 + a1(x)i
d

dx
+ a0(x),

aj : R+ → C are smooth, regular, and lim
x→∞

aj (x) = cj ∈ R, (j = 0, 1)

σess(T ) =
{
ξ2 + c1ξ + c0 : ξ ∈ R

}
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Recall

A =

−
d
dt

p
d
dt

+ q − d
dt

b+ c

b
d
dt

+ c d



det(A− λ) = −
(
∆(t)− λ

) d2

dt2 + “lower order terms”, where

∆(t) := d(t)− |b(t)|2

p(t)
, t ∈ [0,∞).

The Schur complement is given by, for λ ∈ C \ σ(d),

S(λ) =: −π(·, λ)
d2

dt2 + ρ(·, λ) i
d
dt

+ κ(·, λ),

where

π(·, λ) := p − |b2|
d − λ , ρ(·, λ) := −2 Im(bc)

d − λ + i
∂

∂t
π(·, λ),

κ(·, λ) := q − λ− |c|2

d − λ +
∂

∂t
Re
( bc

d − λ

)
.
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The strategy:

1 describe the regular part σ r
ess(A) using the result of [Atkinson et al. (1994)] and a

decomposition principle

– for any t0 > 0, the operator A in L2(R+)⊕ L2(R+) is a finite-dimensional
extension of the orthogonal sum A(0,t0) ⊕A(t0,∞), so

2 for all λ outside of σ r
ess(A) = cl{∆(R)} and an exceptional set Λ∞(d), establish

λ ∈ σess(A) ⇐⇒ 0 ∈ σess(S(λ))

3 characterize 0 ∈ σess(S(λ)) using the explicit description of the essential spectrum
in the scalar case.

S(λ) = −π(·, λ)
d2

dt2 + ρ(·, λ) i
d
dt

+ κ(·, λ)

= π(·, λ)
(
− d2

dt2 +
ρ(·, λ)

π(·, λ)
i

d
dt

+
κ(·, λ)

π(·, λ)

)
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Theorem (I. - Siegl - Tretter’15)

σ r
ess(A) = cl{∆(R)}.

λ ∈ σ s
ess(A) ⇐⇒

(
lim

t↗∞

r(t , λ)

π(t , λ)

)2

− lim
t↗∞

κ(t , λ)

π(t , λ)
≥ 0.

the absence resp. presence of σ s
ess(A) is characterized in terms of π0(λ), π1(λ) in

π(t , λ) = π0(λ) + π1(λ)(t − β) +R(t , λ), t ↗ β.

Theorem (I. - Siegl - Tretter’15)

σ s
ess(A) 6= ∅ ⇐⇒ π0(λ) = π1(λ) = 0.

earlier works concern special cases of classification in terms of π0(λ), π1(λ):

– in Kurasov, Lelyavin, Naboko (2008): π0(λ) 6= 0 or π0(λ) = 0, π1(λ) 6= 0.
– in Kurasov, Naboko (2003): π0(λ) = π1(λ) = 0;
– in Möller (2004): π0(λ) 6= 0;
– in Mennicken, Naboko, Tretter (2002): π0(λ) = π1(λ) = 0.
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Application to a spectral problem for symmetric stellar equilibrium models

In L2(0,R)⊕ L2(0,R), consider

A =


− d

dt
p1

d
dt

+ q1
d
dt

p2 + q2

−p2
d
dt

+ q2 p3


with coefficient functions

p1 :=
Γ1p
%
, p2 := c

Γ1p
t%

, p3 := c2 Γ1p
t2%

, . . .

p, q are related to Lane-Emden equation:

θ′′(t) +
2
t
θ′(t) = − 1

α2 θ(t)n, t ∈ (0,∞)

R is the first zero of θ.

σess(A) = {0}
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Comments on further generalizations:

– non-symmetric case

– matrix Pseudo-differential operators

Reference:
[1] Ibrogimov, O. O., Siegl, P., and Tretter, C.

Analysis of the essential spectrum of singular matrix differential operators,
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[4] Qi, J., and Chen, Sh.
Essential spectra of singular matrix differential operators of mixed order,
J. Differential Equations, 250 (2011), 4219–4235.

[3] Kurasov, P., Lelyavin, I., and Naboko, S.
On the essential spectrum of a class of singular matrix differential operators. II. Weyl’s limit
circles for the Hain–Lüst operator whenever quasi-regularity conditions are not satisfied,
Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 109–138.

[2] Atkinson, F. V., Langer H., Mennicken, R., and Shkalikov, A. A.
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Thanks for your attention!
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