Spectral analysis of the magnetic Laplacian in the semiclassical limit

Jean-Philippe MIQUEU

PhD student at the Mathematics Research Institute of Rennes Advisors : Monique DAUGE, Nicolas RAYMOND

February 2016

Introduction

- Physical motivations
- General problem
- Literature on the semiclassical analysis of the magnetic Laplacian
- Some articles on the topic

2 Spectral analysis of the magnetic Laplacian when h ightarrow 0

- Framework and notations
- Heuristic about the rule of model operators

8 Numerical simulations (with the Finite Element Librairy Mélina++)

- Bottom of the spectrum of the Pan and Kwek operator
- Asymptotic of the first ten eigenvalues
- First ten eigenmodes

Introduction

- Physical motivations
- General problem
- Literature on the semiclassical analysis of the magnetic Laplacian
- Some articles on the topic

2) Spectral analysis of the magnetic Laplacian when h ightarrow 0

- Framework and notations
- Heuristic about the rule of model operators

3 Numerical simulations (with the Finite Element Librairy Mélina++)

- Bottom of the spectrum of the Pan and Kwek operator
- Asymptotic of the first ten eigenvalues
- First ten eigenmodes

Superconductivity

Magnetic Laplacian = Schrödinger operator with magnetic field

$$(-ih\nabla + \mathbf{A})^2 = \sum_{j=1}^2 (hD_{x_j} + A_j)^2, \ \boxed{D_{x_j} = -i\partial_{x_j}}$$

- *h*: the semiclassical parameter
- $\mathbf{A} = (A_1, A_2)$: the magnetic potential vector
- $\mathbf{B} = \nabla \times \mathbf{A}$: the magnetic field
- $(\lambda_n(h), \psi_{n,h})$: the eigenvalues and eigenfunctions

Magnetic Laplacian = Schrödinger operator with magnetic field

$$(-ih\nabla + \mathbf{A})^2 = \sum_{j=1}^2 (hD_{x_j} + A_j)^2, \quad D_{x_j} = -i\partial_{x_j}$$

- *h*: the semiclassical parameter
- $\mathbf{A} = (A_1, A_2)$: the magnetic potential vector
- $\mathbf{B} = \nabla \times \mathbf{A}$: the magnetic field
- $(\lambda_n(h), \psi_{n,h})$: the eigenvalues and eigenfunctions

Question

 $(\lambda_n(h),\psi_{n,h}) \underset{h\to 0}{\sim}?$

Magnetic Laplacian = Schrödinger operator with magnetic field

$$(-ih\nabla + \mathbf{A})^2 = \sum_{j=1}^2 (hD_{x_j} + A_j)^2, \ \boxed{D_{x_j} = -i\partial_{x_j}}$$

- *h*: the semiclassical parameter
- $\mathbf{A} = (A_1, A_2)$: the magnetic potential vector
- $\mathbf{B} = \nabla \times \mathbf{A}$: the magnetic field
- $(\lambda_n(h), \psi_{n,h})$: the eigenvalues and eigenfunctions

Question

 $(\lambda_n(h),\psi_{n,h}) \underset{h\to 0}{\sim}?$

Bibliographic references

S. FOURNAIS, B. HELFFER, Spectral methods in Surface Superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser Boston Inc., Boston, MA, 2010.

V. BONNAILLIE-NOËL, M. DAUGE, N. POPOFF, Ground state energy of the magnetic Laplacian on corner domains. To appear in Mémoires de la SMF, (2016).

Some references with a non vanishing magnetic field:

Constant magnetic field $B \equiv 1$:

- Bolley, Helffer (1997), Bauman-Phillips-Tang (1998), del Pino, Felmer, Sternberg (2000), (2D, disc),
- Helffer, Morame (2001), (2D, smooth boundary),
- Helffer, Morame (2004), (3D, smooth boundary),
- Bonnaillie (2005), (2D, corners),
- Fournais, Persson (2011), (3D, balls).

Non vanishing and variable magnetic field B:

- Lu, Pan (1999) ; Raymond (2009) (2D, smooth boundary).
- Lu. Pan (2000) ; Raymond (2010) ; Helffer, Kordyukov (2013), (3D, smooth boundary).
- Bonnaillie-Noël (2005), Bonnaillie-Noël, Dauge (2006), Bonnaillie-Noël, Fournais (2007), (2D, corners).

Some references with a non vanishing magnetic field:

Constant magnetic field $B \equiv 1$:

- Bolley, Helffer (1997), Bauman-Phillips-Tang (1998), del Pino, Felmer, Sternberg (2000), (2D, disc),
- Helffer, Morame (2001), (2D, smooth boundary),
- Helffer, Morame (2004), (3D, smooth boundary),
- Bonnaillie (2005), (2D, corners),
- Fournais, Persson (2011), (3D, balls).

Non vanishing and variable magnetic field B:

- Lu, Pan (1999) ; Raymond (2009) (2D, smooth boundary),
- Lu, Pan (2000) ; Raymond (2010) ; Helffer, Kordyukov (2013), (3D, smooth boundary),
- Bonnaillie-Noël (2005), Bonnaillie-Noël, Dauge (2006), Bonnaillie-Noël, Fournais (2007), (2D, corners).

References with a vanishing magnetic field:

- Montgomery (1995), (the first case when the model of cancellation appears),
- Helffer, Morame (1996) (behaviour of the ground state in hypersurface),
- Pan, Kwek (2002), (2D, Neumann boundary condition),
- Helffer, Kordyukov (2009), (hypersurface),
- Dombrowski, Raymond (2013), (cancellation along a closed and smooth curve in the whole plane),
- Bonnaillie-Noël, Raymond (2015), (broken line of cancellation inside Ω , Neumann boundary condition),
- Attar, Helffer, Kachmar (2015), (minimizing of the energy when the Ginzburg-Landau parameter tends to infinity, Neumann boundary condition).

Introduction

- Physical motivations
- General problem
- Literature on the semiclassical analysis of the magnetic Laplacian
- Some articles on the topic

2 Spectral analysis of the magnetic Laplacian when h ightarrow 0

- Framework and notations
- Heuristic about the rule of model operators

Numerical simulations (with the Finite Element Librairy Mélina++)

- Bottom of the spectrum of the Pan and Kwek operator
- Asymptotic of the first ten eigenvalues
- First ten eigenmodes

- $\Omega \subset \mathbb{R}^2$ open, bounded, simply connected, with smooth boundary
- $\mathbf{A} \in \mathcal{C}^{\infty}(\overline{\Omega}, \mathbb{R}^2)$
- Neumann magnetic boundary condition $(-ih \nabla + \mathbf{A})u \cdot \nu = 0$ on $\partial \Omega$

$$\mathsf{Dom}(\mathcal{P}_{h,\mathbf{A},\Omega})=\{u\in \operatorname{\mathsf{H}}^2(\Omega),(-ih
abla+\mathbf{A})u\cdot
u=0 ext{ on }\partial\Omega\}$$

$$\mathsf{Sp}(\mathcal{P}_{h,\mathbf{A},\Omega}) = \mathsf{Sp}_{\mathsf{disc}}(\mathcal{P}_{h,\mathbf{A},\Omega}) = (\lambda_n(h))_{n \in \mathbb{N}^*} = \{\lambda_1(h) \leq \lambda_2(h) \leq \cdots \}$$

- $\sharp\left(\Gamma\cap\partial\Omega\right)<\infty$ and Γ is non tangent to $\partial\Omega$
- $|\nabla \mathbf{B}(\mathbf{x})| \neq 0, \ \forall \ \mathbf{x} \in \Gamma$

$$g_1(\mathsf{x}) = \frac{1}{\sqrt{h}} \exp\left(-\frac{|\mathsf{x}|^2}{\sqrt{h}}\right), h = \frac{1}{5}$$

$$g_1(\mathsf{x}) = rac{1}{\sqrt{h}} \exp\left(-rac{|\mathsf{x}|^2}{\sqrt{h}}
ight), h = rac{1}{10}$$

$$g_1(\mathsf{x}) = rac{1}{\sqrt{h}} \exp\left(-rac{|\mathsf{x}|^2}{\sqrt{h}}
ight), h = rac{1}{20}$$

$$g_1(\mathsf{x}) = rac{1}{\sqrt{h}} \exp\left(-rac{|\mathsf{x}|^2}{\sqrt{h}}
ight), h = rac{1}{40}$$

$$g_1(\mathsf{x}) = rac{1}{\sqrt{h}} \exp\left(-rac{|\mathsf{x}|^2}{\sqrt{h}}
ight), h = rac{1}{80}$$

Where does the first eigenfunction(s) localize in the semiclassical limit?

Different "areas" on $\boldsymbol{\Omega}$

1) $\Omega \setminus (\partial \Omega \cup \Gamma)$

∂Ω\Γ

3) **Γ**\∂Ω

4) $\partial \Omega \cap \Gamma$

The magnetic Laplacian $\mathcal{P}_{1,\textbf{A},\mathbb{R}^2}$ in the model case when $\textbf{B}\equiv 1:$

 $D_y^2 + (D_x - y)^2$

The magnetic Laplacian $\mathcal{P}_{1,\mathbf{A},\mathbb{R}^2}$ in the model case when $\mathbf{B} \equiv 1$:

$$D_y^2 + \left(D_x - y\right)^2$$

By unitary transforms, we are reduced to the harmonic oscillator:

$$\mathcal{H} = D_y^2 + y^2$$
, on \mathbb{R}

The magnetic Laplacian $\mathcal{P}_{1,\textbf{A},\mathbb{R}^2_+}$ in the model case when $\textbf{B}\equiv 1$:

$$D_t^2 + \left(D_s - t\right)^2$$

The magnetic Laplacian $\mathcal{P}_{1,\textbf{A},\mathbb{R}^2_+}$ in the model case when $\textbf{B}\equiv 1:$

$$D_t^2 + \left(D_s - t\right)^2$$

By unitary transforms, we are reduced to the De Gennes operator:

 $\mathcal{G}(\xi) = D_t^2 + (t - \xi)^2$ on \mathbb{R}_+ with Neuman boundary condition

The magnetic Laplacian $\mathcal{P}_{1,\mathbf{A},\mathbb{R}^2}$ in the model case when $\mathbf{B}(s,t) = t$:

$$D_t^2 + \left(D_s - \frac{t^2}{2}\right)$$

The magnetic Laplacian $\mathcal{P}_{1,\mathbf{A},\mathbb{R}^2}$ in the model case when $\mathbf{B}(s,t) = t$:

$$D_t^2 + \left(D_s - \frac{t^2}{2}\right)$$

By unitary transforms, we are reduced to the Montgomery operator:

$$\mathcal{M}(\eta) = D_t^2 + \left(rac{t^2}{2} - \eta
ight)^2 ext{ on } \mathbb{R}$$

The magnetic Laplacian $\mathcal{P}_{1,\mathbf{A},\mathbb{R}^2_+}$ in the model case when $\mathbf{B}(s,t) = t \cos \theta - s \sin \theta$. We get the Pan and Kwek operator:

$$\mathcal{K}_{ heta} = D_t^2 + \left(D_s + st \sin heta - rac{t^2}{2} \cos heta
ight)^2 \, ext{ on } \, \mathbb{R}^2_+$$

with Neumann boundary condition

Case	Operator of reference	Infimum of the spectrum	
1	${\cal H}=D_y^2+y^2$	1	
	on $\mathbb R$	1	
2	$\mathcal{G}(\xi) = D_t^2 + (t-\xi)^2$	$\inf_{k \in \mathbb{P}} Sp\left(\mathcal{G}(\xi)\right) = \Theta_0$	
	on \mathbb{R}_+ with Neumann boundary condition	$\lim_{\xi \in \mathbb{R}} Sp(\mathfrak{G}(\zeta)) = \mathfrak{S}_0$	
3	$\mathcal{M}(\eta) = D_t^2 + \left(rac{t^2}{2} - \eta ight)^2$	$\inf Sp(M(n)) = M_n$	
	on \mathbb{R}	$\inf_{\eta\in\mathbb{R}}\operatorname{Sp}\left(\mathcal{M}(\eta) ight)=\operatorname{M}_{0}$	
4	$\mathcal{K}_{ heta} = D_t^2 + \left(D_s + st \sin heta - rac{t^2}{2} \cos heta ight)^2$	$\inf \operatorname{Sp}\left(\mathcal{K}_{ heta} ight) = \zeta_{1}^{ heta}$	
	on \mathbb{R}^2_+ with Neumann boundary condition	$\lim Sp(n \in \theta) = \zeta_1$	
Numerical computations:			

- $\Theta_0 = \mu_1(\xi_0) \approx 0.5901$, with $\xi_0 = \sqrt{\Theta_0} \approx 0.7682$
- $\mathrm{M}_{0}=
 u_{1}\left(\eta_{0}
 ight)pprox$ 0.5698, with $\eta_{0}pprox$ 0.35

V. BONNAILLIE-NOËL, *Harmonic oscillators with Neumann condition of the half-line*, 2012.

V. BONNAILLIE-NOËL, N. RAYMOND, *Breaking a magnetic zero locus: model operators and numerical approach*, 2015.

Jean-Philippe MIQUEU (University of Rennes 1) Spectral analysis of $(-ih\nabla + \mathbf{A})^2$ when $h \to 0$

$$\mathcal{K}_{\theta} = D_t^2 + \left(D_s + st\sin\theta - \frac{t^2}{2}\cos\theta\right)^2$$
 on \mathbb{R}^2_+ with Neumann boundary condition

$$\mathcal{K}_{ heta} = D_t^2 + \left(D_s + st\sin heta - rac{t^2}{2}\cos heta
ight)^2$$
 on \mathbb{R}^2_+ with Neumann boundary condition

Proposition:

$$\mathsf{inf}\,\mathsf{Sp}_{\mathsf{ess}}(\mathcal{K}_{\theta}) = \mathrm{M}_0$$

$$\mathcal{K}_{ heta} = D_t^2 + \left(D_s + st\sin heta - rac{t^2}{2}\cos heta
ight)^2$$
 on \mathbb{R}^2_+ with Neumann boundary condition

Proposition:

$$\mathsf{inf}\,\mathsf{Sp}_{\mathsf{ess}}(\mathcal{K}_{\theta}) = \mathrm{M}_0$$

Proposition ([Pan-Kwek, 2002]):

•
$$\zeta_1^0 = \zeta_1^\pi = M_0$$

• $\zeta_1^\theta < M_0$, for all $\theta \in (0, \pi)$

$$\mathcal{K}_{ heta} = D_t^2 + \left(D_s + st\sin heta - rac{t^2}{2}\cos heta
ight)^2$$
 on \mathbb{R}^2_+ with Neumann boundary condition

Proposition:

$$\mathsf{inf}\,\mathsf{Sp}_{\mathsf{ess}}(\mathcal{K}_{\theta}) = \mathrm{M}_0$$

Proposition ([Pan-Kwek, 2002]):

•
$$\zeta_1^0 = \zeta_1^\pi = \mathbf{M}_0$$

•
$$\zeta_1^{ heta} < \mathrm{M}_0$$
, for all $heta \in (0,\pi)$

Proposition:

For all $\theta \in (0, \pi)$, ζ_1^{θ} is a eigenvalue and the associated eigenfunctions belong to $\mathscr{S}(\overline{\mathbb{R}^2_+})$.

Summary of the operator hierarchy

$\mathsf{x}_0\in \Omega\backslash (\partial\Omega\cup\mathsf{\Gamma}), \partial\Omega\backslash\mathsf{\Gamma},\mathsf{\Gamma}\backslash\partial\Omega, \partial\Omega\cap\mathsf{\Gamma}$

Case	Operator <i>h</i> dependant	Infimum of the spectrum
1	$h^2 D_y^2 + (h D_y - \mathbf{B}(x_0) y)^2$ on \mathbb{R}^2	$ \mathbf{B}(x_0) h$
2	$h^2 D_t^2 + (h D_s - {f B}({f x}_0) t)^2$ on ${\mathbb R}^2_+$ with Neumann boundary condition	$\Theta_0 \mathbf{B}(x_0) h$
3	$h^2 D_t^2 + \left(h D_s - abla \mathbf{B}(x_0) rac{t^2}{2} ight)^2$ on \mathbb{R}^2	$M_0 \nabla B(x_0) ^{\frac{2}{3}} h^{\frac{4}{3}}$
4	$h^2 D_t^2 + \left(hD_s + \nabla \mathbf{B}(x_0) \left(st\sin\theta(x_0) - \frac{t^2}{2}\cos\theta(x_0)\right)\right)^2$ on \mathbb{R}^2_+ with Neumann boundary condition	$\zeta_1^{\theta(x_0)} \nabla \mathbf{B}(x_0) ^{\frac{2}{3}} h^{\frac{4}{3}}$

Approximation of the bottom of the spectrum of $\mathcal{P}_{h,\mathbf{A},\Omega}$

Theorem:

Under the condition

$$\inf_{x \in \partial \Omega \cap \Gamma} \zeta_1^{\theta(x)} |\nabla \mathbf{B}(x)|^{2/3} < \mathrm{M}_0 \inf_{x \in \Omega \cap \Gamma} |\nabla \mathbf{B}(x)|^{2/3}$$

we have two results:

O Asymptotique for the first eigenvalue

×

$$\lambda_1(h) = h^{4/3} \inf_{\mathsf{x} \in \partial \Omega \cap \Gamma} \zeta_1^{\theta(\mathsf{x})} |\nabla \mathsf{B}(\mathsf{x})|^{2/3} + \mathcal{O}(h^{5/3})$$

Exponential concentration of the first eigenvector
 There exist C > 0, α > 0 and h₀ > 0, s. t. for all h ∈ (0, h₀),

$$\int_{\Omega} e^{2\alpha h^{-1/3} d(x,\partial\Omega \cap \Gamma)} |\psi_{1,h}(x)|^2 dx \leq C ||\psi_{1,h}||^2_{L^2(\Omega)}.$$

Introduction

- Physical motivations
- General problem
- Literature on the semiclassical analysis of the magnetic Laplacian
- Some articles on the topic

2) Spectral analysis of the magnetic Laplacian when h ightarrow 0

- Framework and notations
- Heuristic about the rule of model operators

3 Numerical simulations (with the Finite Element Librairy Mélina++)

- Bottom of the spectrum of the Pan and Kwek operator
- Asymptotic of the first ten eigenvalues
- First ten eigenmodes

Figure : Eigenvalues ζ_n^{θ} below the bottom of the essential spectrum, for $\theta \in \{\frac{k\pi}{60}, 1 \le k \le 30\}$

Numerical computations:

• $\zeta_1^{\frac{1}{2}} \approx 0.5494, \, M_0 \approx 0.5698$

V. BONNAILLIE-NOËL, N. RAYMOND, Breaking a magnetic zero locus: model operators and numerical approach, 2015.

Jean-Philippe MIQUEU (University of Rennes 1) Spectral analysis of $(-ih\nabla + A)^2$ when $h \to 0$

$\psi_{n,h}$ (in modulus), $h = \frac{1}{40}$ with the numerical value of $\lambda_n(h)h^{-4/3}$

Figure : Finite elements $\mathbb{P}_1,\,24\times 16$ quadrangular elements of degree \mathbb{Q}_{10}

$\psi_{n,h}$ (in modulus), $h = \frac{1}{100}$ with the numerical value of $\lambda_n(h)h^{-4/3}$

Figure : Finite elements $\mathbb{P}_1,\,24\times 16$ quadrangular elements of degree \mathbb{Q}_{10}

$\psi_{n,h}$ (in modulus), $h = \frac{1}{150}$ with the numerical value of $\lambda_n(h)h^{-4/3}$

Figure : Finite elements $\mathbb{P}_1,\,24\times 16$ quadrangular elements of degree \mathbb{Q}_{10}

Merci !

Argument of $\psi_{n,h}$, $h = \frac{1}{40}$ with the numerical value of $\lambda_n(h)h^{-4/3}$

Figure : Finite elements $\mathbb{P}_1,\,24\times 16$ quadrangular elements of degree \mathbb{Q}_{10}

Argument of $\psi_{n,h}$, $h = \frac{1}{100}$ with the numerical value of $\lambda_n(h)h^{-4/3}$

Figure : Finite elements $\mathbb{P}_1,\,24\times 16$ quadrangular elements of degree \mathbb{Q}_{10}

Argument of $\psi_{n,h}$, $h = \frac{1}{150}$ with the numerical value of $\lambda_n(h)h^{-4/3}$

Figure : Finite elements $\mathbb{P}_1,\,24\times 16$ quadrangular elements of degree \mathbb{Q}_{10}