Spectral analysis of the magnetic Laplacian in the semiclassical limit

Jean-Philippe MIQUEU

PhD student at the Mathematics Research Institute of Rennes
Advisors : Monique DAUGE, Nicolas RAYMOND

February 2016

IRMAR
(1) Introduction

- Physical motivations
- General problem
- Literature on the semiclassical analysis of the magnetic Laplacian
- Some articles on the topic
(2) Spectral analysis of the magnetic Laplacian when $h \rightarrow 0$
- Framework and notations
- Heuristic about the rule of model operators

3 Numerical simulations (with the Finite Element Librairy Mélina++)

- Bottom of the spectrum of the Pan and Kwek operator
- Asymptotic of the first ten eigenvalues
- First ten eigenmodes
(1) Introduction
- Physical motivations
- General problem
- Literature on the semiclassical analysis of the magnetic Laplacian
- Some articles on the topic
(2) Spectral analysis of the magnetic Laplacian when $h \rightarrow 0$
- Framework and notations
- Heuristic about the rule of model operators
(3) Numerical simulations (with the Finite Element Librairy Mélina++)
- Bottom of the spectrum of the Pan and Kwek operator
- Asymptotic of the first ten eigenvalues
- First ten eigenmodes

Superconductivity

Magnetic Laplacian $=$ Schrödinger operator with magnetic field

$$
(-i h \nabla+\mathbf{A})^{2}=\sum_{j=1}^{2}\left(h D_{x_{j}}+A_{j}\right)^{2}, D_{x_{j}}=-i \partial_{x_{j}}
$$

- h : the semiclassical parameter
- $\mathbf{A}=\left(A_{1}, A_{2}\right)$: the magnetic potential vector
- $\mathbf{B}=\nabla \times \mathbf{A}$: the magnetic field
- $\left(\lambda_{n}(h), \psi_{n, h}\right)$: the eigenvalues and eigenfunctions

Magnetic Laplacian $=$ Schrödinger operator with magnetic field

$$
(-i h \nabla+\mathbf{A})^{2}=\sum_{j=1}^{2}\left(h D_{x_{j}}+A_{j}\right)^{2}, D_{x_{j}}=-i \partial_{x_{j}}
$$

- h : the semiclassical parameter
- $\mathbf{A}=\left(A_{1}, A_{2}\right)$: the magnetic potential vector
- $\mathbf{B}=\nabla \times \mathbf{A}$: the magnetic field
- $\left(\lambda_{n}(h), \psi_{n, h}\right)$: the eigenvalues and eigenfunctions

Question

$$
\left(\lambda_{n}(h), \psi_{n, h}\right) \underset{h \rightarrow 0}{\sim} ?
$$

Magnetic Laplacian $=$ Schrödinger operator with magnetic field

$$
(-i h \nabla+\mathbf{A})^{2}=\sum_{j=1}^{2}\left(h D_{x_{j}}+A_{j}\right)^{2}, D_{x_{j}}=-i \partial_{x_{j}}
$$

- h : the semiclassical parameter
- $\mathbf{A}=\left(A_{1}, A_{2}\right)$: the magnetic potential vector
- $\mathbf{B}=\nabla \times \mathbf{A}$: the magnetic field
- $\left(\lambda_{n}(h), \psi_{n, h}\right)$: the eigenvalues and eigenfunctions

Question

$$
\left(\lambda_{n}(h), \psi_{n, h}\right) \underset{h \rightarrow 0}{\sim} ?
$$

Bibliographic references

S. Fournais, B. Helffer, Spectral methods in Surface Superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser Boston Inc., Boston, MA, 2010.
V. Bonnaillie-Noël, M. Dauge, N. Popoff, Ground state energy of the magnetic Laplacian on corner domains. To appear in Mémoires de la SMF, (2016).
N. Raymond, Little Magnetic Book. Preprint, 2016.

Some references with a non vanishing magnetic field:

Constant magnetic field $\mathbf{B} \equiv 1$:

- Bolley, Helffer (1997), Bauman-Phillips-Tang (1998), del Pino, Felmer, Sternberg (2000), (2D, disc),
- Helffer, Morame (2001), (2D, smooth boundary),
- Helffer, Morame (2004), (3D, smooth boundary),
- Bonnaillie (2005), (2D, corners),
- Fournais, Persson (2011), (3D, balls).

Non vanishing and variable magnetic field B:

- Lu, Pan (1999) ; Raymond (2009) (2D, smooth boundary),
- Lu, Pan (2000) ; Raymond (2010) ; Helffer, Kordyukov (2013), (3D, smooth boundary),
- Bonnaillie-Noël (2005), Bonnaillie-Noël, Dauge (2006), Bonnaillie-Noël, Fournais (2007), (2D, corners).

Some references with a non vanishing magnetic field:

Constant magnetic field $\mathbf{B} \equiv 1$:

- Bolley, Helffer (1997), Bauman-Phillips-Tang (1998), del Pino, Felmer, Sternberg (2000), (2D, disc),
- Helffer, Morame (2001), (2D, smooth boundary),
- Helffer, Morame (2004), (3D, smooth boundary),
- Bonnaillie (2005), (2D, corners),
- Fournais, Persson (2011), (3D, balls).

Non vanishing and variable magnetic field B :

- Lu, Pan (1999) ; Raymond (2009) (2D, smooth boundary),
- Lu, Pan (2000) ; Raymond (2010) ; Helffer, Kordyukov (2013), (3D, smooth boundary),
- Bonnaillie-Noël (2005), Bonnaillie-Noël, Dauge (2006), Bonnaillie-Noël, Fournais (2007), (2D, corners).

References with a vanishing magnetic field:

- Montgomery (1995), (the first case when the model of cancellation appears),
- Helffer, Morame (1996) (behaviour of the ground state in hypersurface),
- Pan, Kwek (2002), (2D, Neumann boundary condition),
- Helffer, Kordyukov (2009), (hypersurface),
- Dombrowski, Raymond (2013), (cancellation along a closed and smooth curve in the whole plane),
- Bonnaillie-Noël, Raymond (2015), (broken line of cancellation inside Ω, Neumann boundary condition),
- Attar, Helffer, Kachmar (2015), (minimizing of the energy when the Ginzburg-Landau parameter tends to infinity, Neumann boundary condition).

(1) Introduction

- Physical motivations
- General problem
- Literature on the semiclassical analysis of the magnetic Laplacian
- Some articles on the topic
(2) Spectral analysis of the magnetic Laplacian when $h \rightarrow 0$
- Framework and notations
- Heuristic about the rule of model operators
(3) Numerical simulations (with the Finite Element Librairy Mélina + +)
- Bottom of the spectrum of the Pan and Kwek operator
- Asymptotic of the first ten eigenvalues
- First ten eigenmodes
- $\Omega \subset \mathbb{R}^{2}$ open, bounded, simply connected, with smooth boundary
- $\mathbf{A} \in \mathcal{C}^{\infty}\left(\bar{\Omega}, \mathbb{R}^{2}\right)$
- Neumann magnetic boundary condition $(-i h \nabla+\mathbf{A}) u \cdot \nu=0$ on $\partial \Omega$

$$
\begin{aligned}
& \operatorname{Dom}\left(\mathcal{P}_{h, \mathbf{A}, \Omega}\right)=\left\{u \in H^{2}(\Omega),(-i h \nabla+\mathbf{A}) u \cdot \nu=0 \text { on } \partial \Omega\right\} \\
& \operatorname{Sp}\left(\mathcal{P}_{h, \mathbf{A}, \Omega}\right)=\operatorname{Sp}_{\text {disc }}\left(\mathcal{P}_{h, \mathbf{A}, \Omega}\right)=\left(\lambda_{n}(h)\right)_{n \in \mathbb{N}^{*}}=\left\{\lambda_{1}(h) \leq \lambda_{2}(h) \leq \cdots\right\}
\end{aligned}
$$

Assumptions:

- $\#(\Gamma \cap \partial \Omega)<\infty$ and Γ is non tangent to $\partial \Omega$
- $|\nabla \mathbf{B}(x)| \neq 0, \forall x \in \Gamma$

Localisation phenomena : concentration of the L^{2} norm when $h \rightarrow 0$

$$
g_{1}(x)=\frac{1}{\sqrt{h}} \exp \left(-\frac{|x|^{2}}{\sqrt{h}}\right), h=\frac{1}{5}
$$

Localisation phenomena : concentration of the L^{2} norm when $h \rightarrow 0$

$$
g_{1}(x)=\frac{1}{\sqrt{h}} \exp \left(-\frac{|\mathrm{x}|^{2}}{\sqrt{h}}\right), h=\frac{1}{10}
$$

Localisation phenomena : concentration of the L^{2} norm when $h \rightarrow 0$

$$
g_{1}(x)=\frac{1}{\sqrt{h}} \exp \left(-\frac{|x|^{2}}{\sqrt{h}}\right), h=\frac{1}{20}
$$

Localisation phenomena : concentration of the L^{2} norm when $h \rightarrow 0$

$$
g_{1}(x)=\frac{1}{\sqrt{h}} \exp \left(-\frac{|\mathrm{x}|^{2}}{\sqrt{h}}\right), h=\frac{1}{40}
$$

Localisation phenomena : concentration of the L^{2} norm when $h \rightarrow 0$

$$
g_{1}(x)=\frac{1}{\sqrt{h}} \exp \left(-\frac{|x|^{2}}{\sqrt{h}}\right), h=\frac{1}{80}
$$

Where does the first eigenfunction(s) localize in the semiclassical limit?

Different "areas" on Ω

1) $\Omega \backslash(\partial \Omega \cup \Gamma)$
2) $\partial \Omega \backslash \Gamma$
3) $\Gamma \backslash \partial \Omega$
4) $\partial \boldsymbol{\Omega} \cap \boldsymbol{\Gamma}$

"Zoom" on each area

The magnetic Laplacian $\mathcal{P}_{1, \mathbf{A}, \mathbb{R}^{2}}$ in the model case when $\mathbf{B} \equiv 1$:

$$
D_{y}^{2}+\left(D_{x}-y\right)^{2}
$$

"Zoom" on each area

The magnetic Laplacian $\mathcal{P}_{1, \mathrm{~A}, \mathbb{R}^{2}}$ in the model case when $\mathbf{B} \equiv 1$:

$$
D_{y}^{2}+\left(D_{x}-y\right)^{2}
$$

By unitary transforms, we are reduced to the harmonic oscillator:

$$
\mathcal{H}=D_{y}^{2}+y^{2} \text {, on } \mathbb{R}
$$

"Zoom" on each area

The magnetic Laplacian $\mathcal{P}_{1, \mathbf{A}, \mathbb{R}_{+}^{2}}$ in the model case when $\mathbf{B} \equiv 1$:

$$
D_{t}^{2}+\left(D_{s}-t\right)^{2}
$$

"Zoom" on each area

The magnetic Laplacian $\mathcal{P}_{1, \mathbf{A}, \mathbb{R}_{+}^{2}}$ in the model case when $\mathbf{B} \equiv 1$:

$$
D_{t}^{2}+\left(D_{s}-t\right)^{2}
$$

By unitary transforms, we are reduced to the De Gennes operator:

$$
\mathcal{G}(\xi)=D_{t}^{2}+(t-\xi)^{2} \text { on } \mathbb{R}_{+} \text {with Neuman boundary condition }
$$

"Zoom" on each area

The magnetic Laplacian $\mathcal{P}_{1, \mathrm{~A}, \mathbb{R}^{2}}$ in the model case when $\mathbf{B}(s, t)=t$:

$$
D_{t}^{2}+\left(D_{s}-\frac{t^{2}}{2}\right)^{2}
$$

"Zoom" on each area

The magnetic Laplacian $\mathcal{P}_{1, \mathbf{A}, \mathbb{R}^{2}}$ in the model case when $\mathbf{B}(s, t)=t$:

$$
D_{t}^{2}+\left(D_{s}-\frac{t^{2}}{2}\right)^{2}
$$

By unitary transforms, we are reduced to the Montgomery operator:

$$
\mathcal{M}(\eta)=D_{t}^{2}+\left(\frac{t^{2}}{2}-\eta\right)^{2} \text { on } \mathbb{R}
$$

"Zoom" on each area

The magnetic Laplacian $\mathcal{P}_{1, \mathbf{A}, \mathbb{R}_{+}^{2}}$ in the model case when $\mathbf{B}(s, t)=t \cos \theta-s \sin \theta$. We get the Pan and Kwek operator:

$$
\begin{aligned}
\mathcal{K}_{\theta}= & D_{t}^{2}+\left(D_{s}+s t \sin \theta-\frac{t^{2}}{2} \cos \theta\right)^{2} \text { on } \mathbb{R}_{+}^{2} \\
& \text { with Neumann boundary condition }
\end{aligned}
$$

Case	Operator of reference	Infimum of the spectrum
1	$\begin{gathered} \overline{\mathcal{H}=D_{y}^{2}+y^{2}} \\ \text { on } \mathbb{R} \end{gathered}$	1
2	$\mathcal{G}(\xi)=D_{t}^{2}+(t-\xi)^{2}$ on \mathbb{R}_{+}with Neumann boundary condition	$\inf _{\xi \in \mathbb{R}} S p(\mathcal{G}(\xi))=\Theta_{0}$
3	$\mathcal{M}(\eta)=D_{t}^{2}+\left(\frac{t^{2}}{2}-\eta\right)^{2}$ on \mathbb{R}	$\inf _{\eta \in \mathbb{R}} \operatorname{Sp}(\mathcal{M}(\eta))=\mathrm{M}_{0}$
4	$\mathcal{K}_{\theta}=D_{t}^{2}+\left(D_{s}+s t \sin \theta-\frac{t^{2}}{2} \cos \theta\right)^{2}$ on \mathbb{R}_{+}^{2} with Neumann boundary condition	$\operatorname{inf~Sp}\left(\mathcal{K}_{\theta}\right)=\zeta_{1}^{\theta}$

Numerical computations:

- $\Theta_{0}=\mu_{1}\left(\xi_{0}\right) \approx 0.5901$, with $\xi_{0}=\sqrt{\Theta_{0}} \approx 0.7682$
- $\mathrm{M}_{0}=\nu_{1}\left(\eta_{0}\right) \approx 0.5698$, with $\eta_{0} \approx 0.35$

國 V. Bonnaillie-NoËl, Harmonic oscillators with Neumann condition of the half-line, 2012.

- V. Bonnaillie-NoËl, N. Raymond, Breaking a magnetic zero locus: model operators and numerical approach, 2015.

The Pan and Kwek operator
$\mathcal{K}_{\theta}=D_{t}^{2}+\left(D_{s}+s t \sin \theta-\frac{t^{2}}{2} \cos \theta\right)^{2}$ on \mathbb{R}_{+}^{2} with Neumann boundary condition

The Pan and Kwek operator
$\mathcal{K}_{\theta}=D_{t}^{2}+\left(D_{s}+s t \sin \theta-\frac{t^{2}}{2} \cos \theta\right)^{2}$ on \mathbb{R}_{+}^{2} with Neumann boundary condition

Proposition:

$$
\inf \mathrm{Sp}_{\mathrm{ess}}\left(\mathcal{K}_{\theta}\right)=\mathrm{M}_{0}
$$

The Pan and Kwek operator
$\mathcal{K}_{\theta}=D_{t}^{2}+\left(D_{s}+s t \sin \theta-\frac{t^{2}}{2} \cos \theta\right)^{2}$ on \mathbb{R}_{+}^{2} with Neumann boundary condition

Proposition:

$$
\inf \mathrm{Sp}_{\mathrm{ess}}\left(\mathcal{K}_{\theta}\right)=\mathrm{M}_{0}
$$

Proposition ([Pan-Kwek, 2002]):

- $\zeta_{1}^{0}=\zeta_{1}^{\pi}=\mathrm{M}_{0}$
- $\zeta_{1}^{\theta}<\mathrm{M}_{0}$, for all $\theta \in(0, \pi)$

The Pan and Kwek operator

$$
\mathcal{K}_{\theta}=D_{t}^{2}+\left(D_{s}+s t \sin \theta-\frac{t^{2}}{2} \cos \theta\right)^{2} \text { on } \mathbb{R}_{+}^{2} \text { with Neumann boundary condition }
$$

Proposition:

$$
\inf S p_{\text {ess }}\left(\mathcal{K}_{\theta}\right)=M_{0}
$$

Proposition ([Pan-Kwek, 2002]):

- $\zeta_{1}^{0}=\zeta_{1}^{\pi}=\mathrm{M}_{0}$
- $\zeta_{1}^{\theta}<\mathrm{M}_{0}$, for all $\theta \in(0, \pi)$

Proposition:

For all $\theta \in(0, \pi), \zeta_{1}^{\theta}$ is a eigenvalue and the associated eigenfunctions belong to $\mathscr{S}\left(\overline{\mathbb{R}_{+}^{2}}\right)$.

Summary of the operator hierarchy

$$
x_{0} \in \Omega \backslash(\partial \Omega \cup \Gamma), \partial \Omega \backslash\ulcorner,\ulcorner\backslash \partial \Omega, \partial \Omega \cap \Gamma
$$

Case	Operator h dependant	Infimum of the spectrum
1	$\begin{gathered} h^{2} D_{y}^{2}+\left(h D_{y}-\left\|\mathbf{B}\left(x_{0}\right)\right\| y\right)^{2} \\ \text { on } \mathbb{R}^{2} \end{gathered}$	$\mathrm{B}\left(\mathrm{x}_{0}\right) \mid h$
2	$h^{2} D_{t}^{2}+\left(h D_{s}-\left\|\mathbf{B}\left(x_{0}\right)\right\| t\right)^{2}$ on \mathbb{R}_{+}^{2} with Neumann boundary condition	$\Theta_{0}\left\|\mathbf{B}\left(\mathrm{x}_{0}\right)\right\| h$
3	$\begin{gathered} h^{2} D_{t}^{2}+\left(h D_{s}-\left\|\nabla \mathbf{B}\left(x_{0}\right)\right\| \frac{t^{2}}{2}\right)^{2} \\ \text { on } \mathbb{R}^{2} \end{gathered}$	$\mathrm{M}_{0}\left\|\nabla \mathbf{B}\left(\mathrm{x}_{0}\right)\right\|^{\frac{2}{3}} h^{\frac{4}{3}}$
4	$h^{2} D_{t}^{2}+\left(h D_{s}+\left\|\nabla \mathbf{B}\left(x_{0}\right)\right\|\left(s t \sin \theta\left(x_{0}\right)-\frac{t^{2}}{2} \cos \theta\left(x_{0}\right)\right)\right)^{2}$ on \mathbb{R}_{+}^{2} with Neumann boundary condition	$\zeta_{1}^{\theta\left(x_{0}\right)}\left\|\nabla \mathbf{B}\left(\mathrm{x}_{0}\right)\right\|^{\frac{2}{3}} h^{\frac{4}{3}}$

Approximation of the bottom of the spectrum of $\mathcal{P}_{h, \mathbf{A}, \Omega}$

Theorem:

Under the condition

$$
\inf _{x \in \partial \Omega \cap \Gamma} \zeta_{1}^{\theta(x)}|\nabla \mathbf{B}(x)|^{2 / 3}<\mathrm{M}_{0} \inf _{x \in \Omega \cap \Gamma}|\nabla \mathbf{B}(x)|^{2 / 3}
$$

we have two results:
(1) Asymptotique for the first eigenvalue

$$
\lambda_{1}(h)=h^{4 / 3} \inf _{x \in \partial \Omega \cap \Gamma} \zeta_{1}^{\theta(x)}|\nabla \mathbf{B}(x)|^{2 / 3}+\mathcal{O}\left(h^{5 / 3}\right)
$$

(2) Exponential concentration of the first eigenvector There exist $C>0, \alpha>0$ and $h_{0}>0$, s. t. for all $h \in\left(0, h_{0}\right)$,

$$
\int_{\Omega} e^{2 \alpha h^{-1 / 3} \mathrm{~d}(\mathrm{x}, \partial \Omega \cap \Gamma)}\left|\psi_{1, h}(\mathrm{x})\right|^{2} \mathrm{~d} \mathrm{x} \leq C\left\|\psi_{1, h}\right\|_{\mathrm{L}^{2}(\Omega)}^{2}
$$

- Physical motivations
- General problem
- Literature on the semiclassical analysis of the magnetic Laplacian
- Some articles on the topic
(2) Spectral analysis of the magnetic Laplacian when $h \rightarrow 0$
- Framework and notations
- Heuristic about the rule of model operators
(3) Numerical simulations (with the Finite Element Librairy Mélina++)
- Bottom of the spectrum of the Pan and Kwek operator
- Asymptotic of the first ten eigenvalues
- First ten eigenmodes

Figure : Eigenvalues ζ_{n}^{θ} below the bottom of the essential spectrum, for $\theta \in\left\{\frac{k \pi}{60}, 1 \leq k \leq 30\right\}$

Numerical computations:

- $\zeta_{1}^{\frac{\pi}{2}} \approx 0.5494, \mathrm{M}_{0} \approx 0.5698$
- V. Bonnaillie-Noël, N. Raymond, Breaking a magnetic zero locus: model operators and numerical approach, 2015.

$\mathbf{B}(s, t)=s, \Omega=\left[-\frac{3}{2}, \frac{3}{2}\right] \times[-1,1]$

Figure: First ten eigenvalues $\lambda_{n}(h)$ rescaled by $h^{-4 / 3}$ according to $\frac{1}{h}$
$\psi_{n, h}$ (in modulus), $h=\frac{1}{40}$ with the numerical value of $\lambda_{n}(h) h^{-4 / 3}$

Figure: Finite elements $\mathbb{P}_{1}, 24 \times 16$ quadrangular elements of degree \mathbb{Q}_{10}

國 Y. Lafranche, D. Martin., Melina++, bibliothèque de calculs éléments finis, http://anum-maths.univ-rennes1.fr/melina/ (2012).
$\psi_{n, h}$ (in modulus), $h=\frac{1}{100}$ with the numerical value of $\lambda_{n}(h) h^{-4 / 3}$

Figure: Finite elements $\mathbb{P}_{1}, 24 \times 16$ quadrangular elements of degree \mathbb{Q}_{10}

國 Y. Lafranche, D. Martin., Melina++, bibliothèque de calculs éléments finis, http://anum-maths.univ-rennes1.fr/melina/ (2012).
$\psi_{n, h}$ (in modulus), $h=\frac{1}{150}$ with the numerical value of $\lambda_{n}(h) h^{-4 / 3}$

Figure: Finite elements $\mathbb{P}_{1}, 24 \times 16$ quadrangular elements of degree \mathbb{Q}_{10}

國 Y. Lafranche, D. Martin., Melina++, bibliothèque de calculs éléments finis, http://anum-maths.univ-rennes1.fr/melina/ (2012).

Merci !

Argument of $\psi_{n, h}, h=\frac{1}{40}$ with the numerical value of $\lambda_{n}(h) h^{-4 / 3}$

Figure: Finite elements $\mathbb{P}_{1}, 24 \times 16$ quadrangular elements of degree \mathbb{Q}_{10}
Y. Lafranche, D. Martin., Melina++, bibliothèque de calculs éléments finis, http://anum-maths.univ-rennes1.fr/melina/ (2012).

Argument of $\psi_{n, h}, h=\frac{1}{100}$ with the numerical value of $\lambda_{n}(h) h^{-4 / 3}$

Figure: Finite elements $\mathbb{P}_{1}, 24 \times 16$ quadrangular elements of degree \mathbb{Q}_{10}

R Y. Lafranche, D. Martin., Melina++, bibliothèque de calculs éléments finis, http://anum-maths.univ-rennes1.fr/melina/ (2012).

Argument of $\psi_{n, h}, h=\frac{1}{150}$ with the numerical value of $\lambda_{n}(h) h^{-4 / 3}$

Figure: Finite elements $\mathbb{P}_{1}, 24 \times 16$ quadrangular elements of degree \mathbb{Q}_{10}

國 Y. Lafranche, D. Martin., Melina++, bibliothèque de calculs éléments finis, http://anum-maths.univ-rennes1.fr/melina/ (2012).

