
Geometric description of finite-dimensional
quantum systems in complex projective spaces and

applications

Davide Pastorello

University of Trento and INFN

Bressanone, 9 February 2016



Outline

1. Hamiltonian geometric formulation of QM
→ Complex projective space as quantum phase space;
→ Observables and density matrices as phase space functions;
→ Quantum dynamics as a Hamiltonian flow.

2. Composite systems and entanglement
→ A geomteric entanglement measure.

3. Quantum control theory
→ Study of quantum controllability with classical machinery.



Classical tools
Phase space
A classical system with n spatial degrees of freedom is described in
a 2n-dimensional symplectic manifold (M, ω).

Dynamics
Hamilton equation Liouville equation

dx
dt

= XH(x(t))
∂ρ

∂t
+{ρ,H}PB = 0

H : M→ R is the Hamiltonian function.
XH is the Hamiltonian vector field, given by: ω(XH , ·) = dH(·)

Classical expecation values of f : M→ R

〈f 〉ρ =

∫
M

f (x)ρ(x)dµ(x)

Observable C*-algebra
A = C∞(M)



QM in a classical-like fashion

Standard formulation of QM in a Hilbert space H:

Quantum states: D = {σ ∈ B1(H)|σ ≥ 0, tr(σ) = 1}
Quantum observables: Self-adjoint operators in H.

Pure states (extremal points of D) are in bijective correspondence
with projective rays in H:

P(H) =
H

∼
\ [0] ψ ∼ φ ⇔ ∃α ∈ C \ {0} s.t. ψ = αφ

dimH = n < +∞
P(H) is a real (2n − 2)-dimensional manifold with the following
characterization of tangent space:
p ∈ P(H): ∀v ∈ TpP(H) ∃Av ∈ iu(n) s.t. v = −i [Av , p].

u(n) is the Lie algebra of U(n)
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QM in a classical-like fashion

Geometry of P(H)

Symplectic form: ωp(u, v) := −i k tr([Au,Av ]p) k > 0.

Riemannian metric:
gp(u, v) := −k tr(([Au, p][Av , p] + [Av , p][Au, p])p) k > 0

Complex form: jp : TpP(H) 3 v 7→ i [v , p] ∈ TpP(H)

p 7→ jp is smooth and jpjp = −id for any p ∈ P(H):

ωp(u, v) = gp(u, jpv)

(P(H), ω, g , j) is a Kähler manifold.



QM in a classical-like fashion

Quantum observables as phase space functions
O : iu(n) 3 A 7→ fA : P(H)→ R

Quantum states as Liouville densities
S : D 3 σ 7→ ρσ : P(H)→ [0, 1]

Set up a Hamiltonian theory
-) Equivalence Hamilton/Schrödinger dynamics:

dp
dt

= −i [H, p(t)] ⇔ dp
dt

= XfH (p(t))

-) Equivalence of expectation values:

〈A〉σ = tr(Aσ) =
∫
P(H)

fA ρσdµ



From operators to functions
Definition
A map f : P(H)→ C is called frame function if there is Wf ∈ C
s.t. ∑

p∈N

f (p) = Wf

∀N ⊂ P(H) such that dg (p1, p2) =
π
2 for p1, p2 ∈ P(H) with

p1 6= p2 and N is maximal w.r.t. this property.

Observable C*-algebra in terms of phase space functions
(V.Moretti, D.P. 2014)

F2(H) := {f : P(H)→ C| f ∈ L2(P(H), µ), f is a frame function}

O : iu(n) 3 A 7→ fA fA(p) = ktr(Ap) +
1− k
n

tr(A) k > 0

S : D 3 σ 7→ ρσ ρσ(p) =
n(n + 1)

k
tr(σp) +

k − (n + 1)
k
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Composite quantum systems
Composite system described in H1 ⊗H2

The phase space is P(H1 ⊗H2) and not P(H1)× P(H2)... But:

P(H1)× P(H2) is embedded in P(H1 ⊗H2) by Segre embedding:

Seg(|ψ1〉〈ψ1|, |ψ2〉〈ψ2|) = |ψ1 ⊗ ψ2〉〈ψ1 ⊗ ψ2|

and Seg∗
(
F2(H1 ⊗H2)

)
= F2(H1)⊗ F2(H2).

Measure of entanglement
Let ρ : P(H1 ⊗H2)→ [0, 1] be a Liouville density.

ρ1 :=

∫
P(H2)

Seg∗ρ dµ2 ρ2 :=

∫
P(H1)

Seg∗ρ dµ1

E (ρ) =
∫
P(H1)×P(H2)

|Seg∗ρ(p1, p2)−ρ1(p1)ρ2(p2)|2dµ1(p1)dµ2(p2)
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Quantum control

Controlled n-level quantum system

i~
d
dt
|ψ(t)〉 =

[
H0 +

m∑
i=1

Hiui (t)

]
|ψ(t)〉 , |ψ(0)〉 = |ψ0〉

i~
d
dt

U(t) =

[
H0 +

m∑
i=1

Hiui (t)

]
U(t) , U(0) = I

Complete quantum controllability
The n-level system is completely controllable if for any unitary
operator Uf ∈ U(n) there exist controls u1, ..., um and T > 0 such
that U(T ) = Uf .
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Quantum control

Geometric Hamiltonian formulation

ṗ(t) = X0(p(t)) +
m∑

i=1

Xi (p(t))ui (t) , p(0) = p0

Xi are the Hamiltonian fields on P(H) defined by the classical-like
Hamiltonians obtained with our prescription.

Accessibility algebra: Lie algebra C generated by {X0, ...,Xm}.
Rank condition: dim span{X (p)|X ∈ C} = dimP(H) ∀p ∈ P(H)

Theorem (D.P.2015)

Consider a quantum system described by a finite dimensional
bilinear model, the following facts are equivalent:
1. The system is completely controllable;
2. Rank condition is satisfied within geometric formulation;
3. C is the Lie algebra of g-Killing vector fields on P(H).
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Thank you for your attention!


