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Outline

1. Hamiltonian geometric formulation of QM
— Complex projective space as quantum phase space;
— Observables and density matrices as phase space functions;
— Quantum dynamics as a Hamiltonian flow.

2. Composite systems and entanglement
— A geomteric entanglement measure.

3. Quantum control theory
— Study of quantum controllability with classical machinery.



Classical tools
Phase space
A classical system with n spatial degrees of freedom is described in
a 2n-dimensional symplectic manifold (M, w).

Dynamics

Hamilton equation Liouville equation
dx p

P Xu(x(t)) 54'{% H}pg =0

H: M — R is the Hamiltonian function.
Xy is the Hamiltonian vector field, given by: w(Xy,-) = dH(")

Classical expecation values of f : M — R
()= | Fdp)dn()

Observable C*-algebra
A = C®(M)



QM in a classical-like fashion

Standard formulation of QM in a Hilbert space H:

Quantum states: D = {0 € B1(H)|oc > 0, tr(c) = 1}
Quantum observables: Self-adjoint operators in K.

Pure states (extremal points of D) are in bijective correspondence
with projective rays in H:

POO) = 2\[0] Y~ o TaeC\{0) st ¥ = ag
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Quantum states: D = {0 € B1(H)|oc > 0, tr(c) = 1}
Quantum observables: Self-adjoint operators in K.
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dimH = n < +o0
P(H) is a real (2n — 2)-dimensional manifold with the following
characterization of tangent space:

p € P(H): Vv e T,P(H) JA, € iu(n) sit. v=—i[A,,p].
u(n) is the Lie algebra of U(n)



QM in a classical-like fashion

Geometry of P(H)
Symplectic form: wy(u, v) := —i k tr([Au, Av]p) k > 0.

Riemannian metric:
go(u, v) i= =k tr(([Au, pl[Av, Pl + [Av, Pl[Au, P)P) k>0

Complex form: j, : T,P(H) > v — i[v, p] € TrP(H)
p — jp is smooth and jyj, = —id for any p € P(H):

wp(u, v) = gp(u, jpv)

(P(H),w, g,j) is a Khler manifold.



QM in a classical-like fashion

Quantum observables as phase space functions
O:iu(n)>5 A fa:P(H) >R

Quantum states as Liouville densities
8§:D30— p,: P(H) —[0,1]

Set up a Hamiltonian theory

-) Equivalence Hamilton/Schrédinger dynamics:

P inpe] & P =000

-) Equivalence of expectation values:

(A)g = tr(Ac) = / fapodu
P(H)



From operators to functions

Definition
A map f : P(H) — C is called frame function if there is Wy € C

s.t.
> f(p) = Wi

peN

VN C P(H) such that dg(p1, p2) = 5 for p1, po € P(H) with
p1 7% p2 and N is maximal w.r.t. this property.
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Definition
A map f : P(H) — C is called frame function if there is Wy € C
s.t.
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peN

VN C P(H) such that dg(p1, p2) = 5 for p1, po € P(H) with
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Observable C*-algebra in terms of phase space functions
(V.Moretti, D.P. 2014)

F2(H) = {f : P(H) — C|f € L>(P(H), ), fis a frame function}

O iu(m) 3 A fa  fa(p) = ktr(Ap) + ——tr(A) k>0
5:050m 0, polp) = " Der(op) + KHD



Composite quantum systems
Composite system described in H; @ H,

The phase space is P(H; @ Hy) and not P(Hj) x P(H>)... But:
P(H1) x P(Ha) is embedded in P(H; @ Hy) by Segre embedding:
Seg([v1)(¥al, [¥2) (v2]) = |11 @ h2) (1h1 @ 1o

and Seg™ (F2(Hy @ Hy)) = F2(H1) ® F2(Ha).
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Measure of entanglement
Let p: P(H1 ® Hz) — [0, 1] be a Liouville density.

p1 :=/ Segp dua p2 :z/ Seg™p dua
?(9‘(2) T(f}fl)

E(p) = / 1Seg* p(py. p2)—p1(p1)pa(p2) Pdyia (pr) dpia(p2)
P(H1)xP(FH2)



Quantum control
Controlled n-level quantum system

i () = () L 10(0)) = o)

Ho+ Y Hiuj(t)
i=1
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Quantum control

Controlled n-level quantum system

’h*W Ho + ZH ui( (t)) » [¥(0)) = [o)
ihth(t): H0+§H,-u,-(t) ui) , U@O)=I

Complete quantum controllability

The n-level system is completely controllable if for any unitary
operator Ur € U(n) there exist controls w1, ..., u, and T > 0 such
that U(T) = Us.



Quantum control

Geometric Hamiltonian formulation
p(t) = Xo(p(t)) + > _ Xi(p(t))ui(t) . p(0) = po
i=1

X; are the Hamiltonian fields on (%) defined by the classical-like
Hamiltonians obtained with our prescription.
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Quantum control

Geometric Hamiltonian formulation
p(t) = Xo(p(t)) + > _ Xi(p(t))ui(t) . p(0) = po
i=1

X; are the Hamiltonian fields on (%) defined by the classical-like
Hamiltonians obtained with our prescription.

Accessibility algebra: Lie algebra € generated by {Xo, ..., Xim}.
Rank condition: dim span{X(p)|X € C} = dim P(H) Vp € P(H)
Theorem (D.P.2015)

Consider a quantum system described by a finite dimensional
bilinear model, the following facts are equivalent:

1. The system is completely controllable;
2. Rank condition is satisfied within geometric formulation;
3. C is the Lie algebra of g-Killing vector fields on P(3).



Thank you for your attention!



