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Motivations
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Context: topological insulators and band theory.
Hermitian system + translation invariance = Bloch bands and bulk
topological invariants (e.g. first Chern number)
On a cylinder geometry: topologically protected edge modes

What about systems ruled by unitary operators ?

e.g : periodically driven (Floquet) systems, scattering processes,...
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One specific model at d = 2

Scattering of light [Pasek, Chong, ’14] on an oriented lattice
[Ho-,Chalker,-Coddington ’96 ’88]] in a cylinder geometry.
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The spectrum
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Uψ = e−iεψ

Periodic spectrum in k and ε
Bulk bands: delocalized states
Localized edge modes in both gaps

Bulk invariants (1st Chern numbers) are all vanishing,
but there are still topologically protected edge modes !

How to characterize them ?
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Reformulation

U(k) =
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Eigenvalue problem Uψ = e−iεψ can be reconstructed from transfer matrix
(

An+1
Bn+1

)
= T (k , ε)

(
An

Bn

)
T ∈ M2(C)

and some boundary constraints at n = 1 (and similarly for N).
(

A1
B1

)
∈ D1(k, ε;α, β) ∼= C1
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The transfer matrix

1 n−1 n n+1 N

T TT T

At a given (k , ε):
det T = 1 and Sp(T ) = {λ+, λ− = 1/λ+} ∈ C2

|λ+| = |λ−| = 1 ⇒ |(An+1,Bn+1)| ∼ |(An,Bn)|
Delocalized bulk state

|λ+| > 1, |λ−| < 1 ⇒ T nv+ = (λ+)
nv+

Edge modes exponentially localized at n = 1 (resp. N) as eigenstates
associated to λ− (resp. λ+) of the transfer matrix.
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Solving
Initial eigenvalue problem for U reduced to the eigenvalue problem of T :

λ2 + 2f λ+ 1 = 0 with f (k , ε) = −1/2 trT ∈ R

⇒ λ = −f + µ where µ2 = f 2 − 1

µ ∈ iR for f 2 < 1: bulk bands
µ ∈ R for f 2 > 1: gaps
Boundary constrains ∩ Eigenvectors of T :
edge modes (localization = sign of µ)
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Analytic continuation

T allows to reconstruct each edge state of U both for eigenvalues ε(k) and
eigenstates ψ(k).

Associated topological invariant ?
Quantities involved : P[e±ik , e±iε]
Singularity of µ2 = f 2 − 1 at f = ±1 (band/gap frontier)

Analytic continuation of ε 7→ z ≡ ε+ iη
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Elliptic curve
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⇒

For fixed k = k0 → elliptic curve associated to µ2 = f 2 − 1 :
4 poles • where f = ±1
2 branch cuts − where µ2 < 0↔ |f | < 1
µ is analytic on R = gluing of (S∗)+ and (S∗)− (punctured torus)
The punctures ensure the distinction between the two gaps !
One equivalent surface Rk for each k
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Winding number
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Identify all the surfaces Rk to one single punctured torus R0 (flat
family)
On R0, the edge modes of a given gap wind (or not) around a
non-contractible loop.

Toplogical invariant of a gap : winding number of the edge modes
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Winding number
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Identify all the surfaces Rk to one single punctured torus R0 (flat
family)
On R0, the edge modes of a given gap wind (or not) around a
non-contractible loop.

Toplogical invariant of a gap : winding number of the edge modes
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Conclusion and perspectives

Topological invariant associated to each gap of a unitary system, as
winding number of the edge modes on a family of Riemann surfaces.

Adapts [Hatsugai ’93] to the unitary case (extra singularities).

Generalization to other unitary systems. Towards a bulk-edge
correspondence ?
[Graf, Porta ’13], [Avila, Schulz-Baldes, Villegas-Blas ’13]
Symmetry class of the problem ? [Lein’s Talk]
Underlying dynamics and relation to Floquet systems.
[Rudner et al. ’12]

Thank you.
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