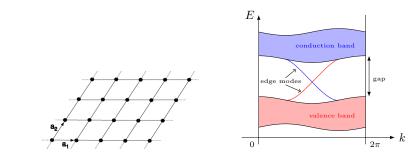


Topological edge states in two-gap unitary systems: a transfer matrix approach

Clément Tauber

joint work with P. Delplace and M. Fruchart (LPENSL) New Journal of Physics 17 (2015) 115008

Monday, February 8th 2016



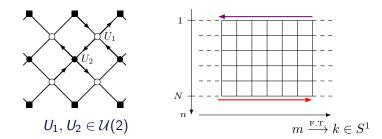
- Context: topological insulators and band theory.
- Hermitian system + translation invariance = Bloch bands and bulk topological invariants (e.g. first Chern number)
- On a cylinder geometry: topologically protected edge modes

What about systems ruled by unitary operators ?

e.g : periodically driven (Floquet) systems, scattering processes,...

One specific model at d = 2

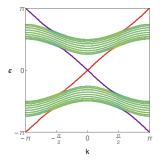
• Scattering of light [Pasek, Chong, '14] on an oriented lattice [Ho-, Chalker,-Coddington '96 '88]] in a cylinder geometry.



• State $\psi(k) \in \mathbb{C}^{2N}$ ruled by

$$U(k) \equiv egin{pmatrix} 1 & & \ & ilde{U}_2(k) \otimes I_{N-1} & \ & 1 \end{pmatrix} \cdot egin{pmatrix} ilde{U}_1(k) \otimes I_N \end{pmatrix} \in \mathcal{U}(2N)$$

The spectrum



 $U\psi = e^{-i\epsilon}\psi$

- Periodic spectrum in k and ϵ
- Bulk bands: delocalized states
- Localized edge modes in both gaps

Bulk invariants (1st Chern numbers) are all vanishing, but there are still topologically protected edge modes !

How to characterize them ?

Reformulation

$$U(k) = \begin{pmatrix} \alpha & \beta & & & \\ \begin{bmatrix} & 2 \times 4 & \\ & & \end{bmatrix} & & \\ & & & \end{bmatrix} , \qquad \psi = \begin{pmatrix} A_1 \\ B_1 \\ \vdots \\ A_n \\ B_n \\ \vdots \\ A_N \\ B_N \end{pmatrix}$$

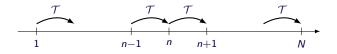
Eigenvalue problem $U\psi = e^{-i\epsilon}\psi$ can be reconstructed from transfer matrix

$$\left(\begin{array}{c}A_{n+1}\\B_{n+1}\end{array}\right) = \mathcal{T}(k,\epsilon)\left(\begin{array}{c}A_n\\B_n\end{array}\right) \qquad \mathcal{T} \in \mathcal{M}_2(\mathbb{C})$$

and some boundary constraints at n = 1 (and similarly for N).

$$\left(egin{array}{c} {\sf A}_1 \ {\sf B}_1 \end{array}
ight) \in {\cal D}_1(k,\epsilon;lpha,eta) \cong {\mathbb C}^1$$

The transfer matrix



At a given (k, ϵ) :

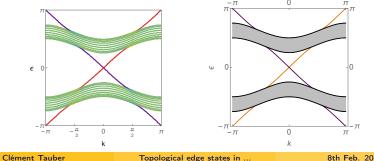
- det $\mathcal{T} = 1$ and $Sp(\mathcal{T}) = \{\lambda_+, \lambda_- = 1/\lambda_+\} \in \mathbb{C}^2$
- $|\lambda_+| = |\lambda_-| = 1 \implies |(A_{n+1}, B_{n+1})| \sim |(A_n, B_n)|$ Delocalized bulk state
- $|\lambda_+| > 1, \ |\lambda_-| < 1 \qquad \Rightarrow \qquad \mathcal{T}^n v_+ = (\lambda_+)^n v_+$

Edge modes exponentially localized at n = 1 (resp. N) as eigenstates associated to λ_- (resp. λ_+) of the transfer matrix.

Solving

Initial eigenvalue problem for U reduced to the eigenvalue problem of \mathcal{T} : $\lambda^2 + 2f\lambda + 1 = 0$ with $f(k, \epsilon) = -1/2 \operatorname{tr} \mathcal{T} \in \mathbb{R}$ $\Rightarrow \lambda = -f + \mu$ where $\mu^2 = f^2 - 1$ • $\mu \in \operatorname{i} \mathbb{R}$ for $f^2 < 1$: bulk bands

- $\mu \in \mathbb{R}$ for $f^2 > 1$: gaps
- Boundary constrains ∩ Eigenvectors of *T*: edge modes (localization = sign of μ)



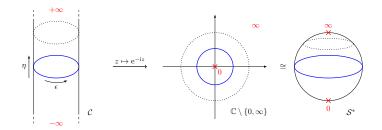
8th Feb. 2016 7 / 11

Analytic continuation

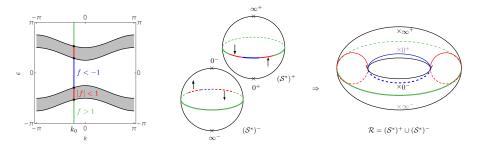
 \mathcal{T} allows to reconstruct each edge state of U both for eigenvalues $\epsilon(k)$ and eigenstates $\psi(k)$.

- Associated topological invariant ?
- Quantities involved : $P[e^{\pm ik}, e^{\pm i\epsilon}]$
- Singularity of $\mu^2 = f^2 1$ at $f = \pm 1$ (band/gap frontier)

Analytic continuation of $\epsilon \mapsto z \equiv \epsilon + i\eta$

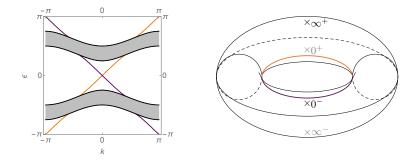


Elliptic curve



- For fixed k = k₀ → elliptic curve associated to μ² = f² − 1 : 4 poles • where f = ±1
 2 branch cuts - where μ² < 0 ↔ |f| < 1
- μ is analytic on $\mathcal{R} =$ gluing of $(S^*)^+$ and $(S^*)^-$ (punctured torus)
- The punctures ensure the distinction between the two gaps !
- One equivalent surface \mathcal{R}_k for each k

Winding number



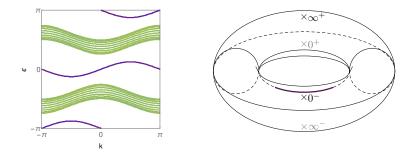
- Identify all the surfaces \mathcal{R}_k to one single punctured torus \mathcal{R}_0 (flat family)
- On \mathcal{R}_0 , the edge modes of a given gap wind (or not) around a non-contractible loop.

Toplogical invariant of a gap : winding number of the edge modes

Clément Tauber

Topological edge states in ...

Winding number



- Identify all the surfaces \mathcal{R}_k to one single punctured torus \mathcal{R}_0 (flat family)
- On \mathcal{R}_0 , the edge modes of a given gap wind (or not) around a non-contractible loop.

Toplogical invariant of a gap : winding number of the edge modes

Clément Tauber

Topological edge states in ...

Topological invariant associated to each gap of a unitary system, as winding number of the edge modes on a family of Riemann surfaces.

Adapts [Hatsugai '93] to the unitary case (extra singularities).

- Generalization to other unitary systems. Towards a bulk-edge correspondence ? [Graf, Porta '13], [Avila, Schulz-Baldes, Villegas-Blas '13]
- Symmetry class of the problem ? [Lein's Talk]
- Underlying dynamics and relation to Floquet systems. [Rudner *et al.* '12]

Thank you.