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They provide one—dimensional approximations for constrained dynamics in
which transversal dimensions are small with respect to longitudinal ones.
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Physical Background

They provide one—dimensional approximations for constrained dynamics in
which transversal dimensions are small with respect to longitudinal ones.
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‘Why NLS on graphs?

Model for Bose—Einstein condensates in ramified traps, optical fibers, ...
(see e.g. Dalfovo, Giorgini, Pitaevskii, Stringari '99, Gnutzmann, Smilanski
'06, Gnutzmann, Smilanski, Derevyanko '11, Noja '14).
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Physical Background

Why graphs?

They provide one—dimensional approximations for constrained dynamics in
which transversal dimensions are small with respect to longitudinal ones.

-
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‘Why NLS on graphs?

Model for Bose—Einstein condensates in ramified traps, optical fibers, ...
(see e.g. Dalfovo, Giorgini, Pitaevskii, Stringari '99, Gnutzmann, Smilanski
'06, Gnutzmann, Smilanski, Derevyanko '11, Noja '14).

Note: experimental evidence for BEC in ramified traps (e.g. Tokuno et al.
'08, Hung et al. '11, Lorenzo et al. '14).
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Basics on metric graphs

A metric graph is a multigraph G = (V, E), where each edge e joining two
vertices V1 and Vs is associated either with a closed bounded interval

le=1[0,4] CR = e is bounded
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Basics on metric graphs

A metric graph is a multigraph G = (V, E), where each edge e joining two
vertices V1 and Vs is associated either with a closed bounded interval

le=1[0,4] CR = e is bounded

or with a closed half-line

le=1[0,+00) CR = e is unbounded.

Lorenzo Tentarelli Politecnico di Torino Bressanone — 09/02/2016



Basics on metric graphs

A metric graph is a multigraph G = (V, E), where each edge e joining two
vertices V1 and Vs is associated either with a closed bounded interval

le=1[0,4] CR = e is bounded
or with a closed half-line
le=1[0,+00) CR = e is unbounded.

Each /. is endowed with a coordinate xe, so that v corresponds to x. =0
and Vo to xe = e

V2
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Basics on metric graphs

A metric graph is a multigraph G = (V, E), where each edge e joining two
vertices V1 and Vo is associated either with a closed bounded interval

le=1[0,4] CR = e is bounded
or with a closed half-line
le=1[0,+00) CR = e is unbounded.

Each /. is endowed with a coordinate x., so that v; corresponds to x. =0
and Vs to xe = e, or viceversa.
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Basics on metric graphs

A metric graph is a multigraph G = (V, E), where each edge e joining two
vertices V1 and Vo is associated either with a closed bounded interval

le=1[0,4] CR = e is bounded
or with a closed half-line
le=1[0,+00) CR = e is unbounded.

Each /. is endowed with a coordinate x., so that v; corresponds to x. =0
and Vs to xe = e, or viceversa.
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Note: half-lines are always attached to the graph at x. = 0.
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Fig.1: 19 edges (2 self-loops, 2 multiple, 3 unbounded),
13 vertices (1 of degree two, 3 at infinity).
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Fig.1: 19 edges (2 self-loops, 2 multiple, 3 unbounded),
13 vertices (1 of degree two, 3 at infinity).
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Fig.2: 4 edges (unbounded), 5 vertices (4 at infinity).
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Functions on graphs

A function v : G — R has to be regarded as a family of functions
u = (Ue)ecr, wWith
ue : le — R Ve € E.
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Functions on graphs

A function v : G — R has to be regarded as a family of functions
u = (Ue)ecr, wWith

e le — R Ve € E.

Then, LP(G) is defined as the set of functions u such that

ue € LP(le) Ve € E, with norm [[uf|f,g) = D lluellfn,

ecE
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Functions on graphs

A function v : G — R has to be regarded as a family of functions
u = (Ue)ecr, wWith

e le — R Ve € E.

Then, LP(G) is defined as the set of functions u such that

ue € LP(le) Ve € E, with norm [[uf|f,g) = D lluellfn,

ecE

and HY(G) as the set of continuous functions u (continuity means no
jumps at vertices) such that

ue € H'(le) Ve € E, with norm [lullZs gy = Y lluellfng,

eckE
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Stationary solutions

General problem: find stationary solutions of the cubic Gross—Pitaevskii
equation on G (focusing case),
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Stationary solutions

General problem: find stationary solutions of the cubic Gross—Pitaevskii
equation on G (focusing case), that is functions of the form

U(t, x) = e?tu(x), AeR, u:G—R,
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Stationary solutions

General problem: find stationary solutions of the cubic Gross—Pitaevskii
equation on G (focusing case), that is functions of the form

U(t, x) = e?tu(x), AeR, u:G—R,

that satisfy
i0p = =053 — |9’ on G

with homogeneous Kirchhoff conditions at the vertices.
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Stationary solutions

General problem: find stationary solutions of the cubic Gross—Pitaevskii
equation on G (focusing case), that is functions of the form

U(t, x) = e?tu(x), AeR, u:G—R,

that satisfy
i0p = =053 — |9’ on G

with homogeneous Kirchhoff conditions at the vertices. If u is a minimizer
of the NLS energy

1 1
E(v) = §||V/H%2(g) - ZHVHLD(g)

in M ={veH(G): Hv||f2(g) = p} (namely, a ground state of mass p),
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Stationary solutions

General problem: find stationary solutions of the cubic Gross—Pitaevskii
equation on G (focusing case), that is functions of the form

U(t, x) = e?tu(x), AeR, u:G—R,

that satisfy
i0p = =053 — |9’ on G

with homogeneous Kirchhoff conditions at the vertices. If u is a minimizer
of the NLS energy

1 1
E(v) = §||V/H%2(g) - ZHVHLD(g)

in M ={veH(G): Hv||f2(g) = p} (namely, a ground state of mass p),
then ¢ (t, x) = e*u(x) is so.
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Stationary solutions

General problem: find stationary solutions of the cubic Gross—Pitaevskii
equation on G (focusing case), that is functions of the form

U(t, x) = e?tu(x), AeR, u:G—R,

that satisfy
i0p = =053 — |9’ on G

with homogeneous Kirchhoff conditions at the vertices. If u is a minimizer
of the NLS energy

1 1
E(v) = §||V/H%2(g) - ZHVHLD(g)

in M ={veH(G): Hv||f2(g) = p} (namely, a ground state of mass p),
then 9 (t, x) = e u(x) is so. = Search for ground states
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Stationary solutions

General problem: find stationary solutions of the eubie Gross—Pitaevskii
equation on G (focusing case), that is functions of the form

(t, x) = e?tu(x), AeR, u:G—R,

that satisfy
i0e) = 0% — |[¥[P*¢Y on G

with homogeneous Kirchhoff conditions at the vertices. If u is a minimizer
of the NLS energy

1 1
E(v) = §||V/H%2(g) - E”VHIZP(Q)

in M ={veH(G): Hv||f2(g) = p} (namely, a ground state of mass p),
then ¢ (t, x) = e u(x) is so. = Search for ground states

Note: we focus on the generalized issue, with 4 replaced by p > 2.
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Examples: real line and half-line
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Examples: real line and half-line

When G =R, for p € (2,6) and p > 0, ground states exist and are
translates of the soliton, namely ¢, : R — R such that

p—2

pu(x) = Cuipsechi? (cpf=rx),

(Zakharov, Shabat '72, Cazenave, Lions '82).
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Examples: real line and half-line

When G =R, for p € (2,6) and p > 0, ground states exist and are
translates of the soliton, namely ¢, : R — R such that

p—2

ou(x) = Cuﬁzipsechﬁ(clumx)’
(Zakharov, Shabat '72, Cazenave, Lions '82).

When G = R, for p € (2,6) and 1 > 0, there is exactly one (positive)
ground state given by half a soliton, namely @, : RT™ — R™ such that

Pu(x) = p2u(x)-

Pu Pu
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Examples: real line and half-line

When G =R, for p € (2,6) and p > 0, ground states exist and are
translates of the soliton, namely ¢, : R — R such that

p—2

ou(x) = Cuﬁzipsechﬁ(clumx)’
(Zakharov, Shabat '72, Cazenave, Lions '82).

When G = R, for p € (2,6) and 1 > 0, there is exactly one (positive)
ground state given by half a soliton, namely @, : RT™ — R™ such that

Pu(x) = p2u(x)-

Pu Pu

Note: one can prove that £($,) < () < 0.
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Examples: N-star graphs

When G is an N-star graph, that is a graph consisting of 1 vertex and N
half-lines,
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Examples: N-star graphs

When G is an N-star graph, that is a graph consisting of 1 vertex and N
half-lines,

00
o0 J o0 case N =4
00
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Examples: N-star graphs

When G is an N-star graph, that is a graph consisting of 1 vertex and N
half-lines,

00
o0 J o0 case N =4
00

then for p € (2,6) and 1 > 0

inf £() = (2,

but the infimum is not attained = no ground state (Adami, Cacciapuoti,
Finco, Noja '12).
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Abstract results

Recently Adami, Serra and Tilli ('14 — '15) addressed the problem of an
arbitrary noncompact graph G, again in the case

p€(2,6) <« L2-subcritical case.
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Abstract results

Recently Adami, Serra and Tilli ('14 — '15) addressed the problem of an
arbitrary noncompact graph G, again in the case

p€(2,6) <« L2-subcritical case.

In particular, they proved that

E(Bu) < jnf E(u) < E(p1)
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Abstract results

Recently Adami, Serra and Tilli ('14 — '15) addressed the problem of an
arbitrary noncompact graph G, again in the case

p€(2,6) <« L2-subcritical case.

In particular, they proved that

E(Bu) < jnf E(u) < E(p1)

and that
inx/,é'(u) < &(py) = theinfimum is attained.
ue
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Abstract results

Recently Adami, Serra and Tilli ('14 — '15) addressed the problem of an
arbitrary noncompact graph G, again in the case

p€(2,6) <« L2-subcritical case.

In particular, they proved that
0,,) < inf <
E(u) < inf £(u) < E(pu)
and that
inx/,é'(u) < &(py) = theinfimum is attained.
[2S]

Examples:

o T

Tadpole graph Signpost graph
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Abstract results

Moreover, they proved that if G satisfies assumption (H), namely

after removing an arbitrary edge from G
(H) every resulting connected component

contains at least one vertex at infinity
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Abstract results

Moreover, they proved that if G satisfies assumption (H), namely

after removing an arbitrary edge from G
(H) every resulting connected component

contains at least one vertex at infinity

then the infimum is never attained unless G is the real line or a tower of
bubbles.
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Abstract results

Moreover, they proved that if G satisfies assumption (H), namely

after removing an arbitrary edge from G
(H) every resulting connected component

contains at least one vertex at infinity

then the infimum is never attained unless G is the real line or a tower of
bubbles.

G

Some towers of bubbles
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Question: what happens when the nonlinearity affects only a compact
portion of G? (Gnutzmann, Smilanski, Derevyanko '11).
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Question: what happens when the nonlinearity affects only a compact
portion of G? (Gnutzmann, Smilanski, Derevyanko '11).

In order to answer this question, let us give the following definition.

The compact core of G, denoted by K, is the metric
subgraph of G consisting of all its bounded edges.
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Question: what happens when the nonlinearity affects only a compact
portion of G? (Gnutzmann, Smilanski, Derevyanko '11).

In order to answer this question, let us give the following definition.

The compact core of G, denoted by K, is the metric
subgraph of G consisting of all its bounded edges.

Examples:
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Question: what happens when the nonlinearity affects only a compact
portion of G? (Gnutzmann, Smilanski, Derevyanko '11).

In order to answer this question, let us give the following definition.

The compact core of G, denoted by K, is the metric
subgraph of G consisting of all its bounded edges.

Examples:
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Question: what happens when the nonlinearity affects only a compact
portion of G? (Gnutzmann, Smilanski, Derevyanko '11).

In order to answer this question, let us give the following definition.

The compact core of G, denoted by K, is the metric
subgraph of G consisting of all its bounded edges.

Examples:
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Question: what happens when the nonlinearity affects only a compact
portion of G? (Gnutzmann, Smilanski, Derevyanko '11).

In order to answer this question, let us give the following definition.

The compact core of G, denoted by K, is the metric
subgraph of G consisting of all its bounded edges.

Examples:

o0
o0 [ o0
o0

Compact cre] = 0
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Ground states for localized nonlinearities

Let K be nonempty and p € [2, ).
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Ground states for localized nonlinearities

Let KC be nonempty and p € [2,00). Now, we define the NLS energy with
a localized nonlinearity as the functional E : H(G) — R such that

1 1
E(w) = 510 IEag) — 1WlEreey
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Ground states for localized nonlinearities

Let KC be nonempty and p € [2,00). Now, we define the NLS energy with
a localized nonlinearity as the functional E : H(G) — R such that

1 1
E(w) = 510 IEag) — 1WlEreey

and denote by Ejp; the restriction of E to the manifold

M= {ve HYG): VIR = 1}.
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Ground states for localized nonlinearities

Let KC be nonempty and p € [2,00). Now, we define the NLS energy with
a localized nonlinearity as the functional E : H(G) — R such that

1 1
E(w) = 510 IEag) — 1WlEreey

and denote by Ejp; the restriction of E to the manifold

M= {ve HYG): VIR = 1}.

Then, the issue of the ground states of mass u reads:

to find functions u € M such that

(P) Eu(s) = inf Eu(v).
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Existence /nonexistence
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Existence /nonexistence

Theorem (T. — JMAA, 2016)

Let p € (2,6) and p > 0. Then inf,cpm Epm(v) < 0.

Lorenzo Tentarelli Politecnico di Torino Bressanone — 09/02/2016



Existence /nonexistence

Theorem (T. — JMAA, 2016)

Let p € (2,6) and p > 0. Then inf,cp Ep(v) < 0. Moreover,

inf Em(v) <0 = the infimum is attained.
veM
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Existence /nonexistence

Theorem (T. — JMAA, 2016)

Let p € (2,6) and p > 0. Then inf,cp Ep(v) < 0. Moreover,

inf Em(v) <0 = the infimum is attained.
veM

Theorem (T. — JMAA, 2016)

e If p € (2,4), then for every 1 > 0 there exists at least a ground state
of mass pu.
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Existence /nonexistence

Theorem (T. — JMAA, 2016)

Let p € (2,6) and p > 0. Then inf,cp Ep(v) < 0. Moreover,

inf Em(v) <0 = the infimum is attained.
veM

Theorem (T. — JMAA, 2016)

e If p € (2,4), then for every 1 > 0 there exists at least a ground state
of mass pu.

o If p € [4,6), then there exist two constants j1, 2 > 0 such that:
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Existence /nonexistence

Theorem (T. — JMAA, 2016)

Let p € (2,6) and p > 0. Then inf,cp Ep(v) < 0. Moreover,

inf Em(v) <0 = the infimum is attained.
veM

Theorem (T. — JMAA, 2016)

e If p € (2,4), then for every 1 > 0 there exists at least a ground state
of mass pu.

o If p € [4,6), then there exist two constants j1, 2 > 0 such that:

© for every i1 > g, there exists at least a ground state of mass y;
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Existence /nonexistence

Theorem (T. — JMAA, 2016)

Let p € (2,6) and p > 0. Then inf,cp Ep(v) < 0. Moreover,

inf Em(v) <0 = the infimum is attained.
veM

Theorem (T. — JMAA, 2016)

e If p € (2,4), then for every 1 > 0 there exists at least a ground state
of mass pu.

o If p € [4,6), then there exist two constants j1, 2 > 0 such that:

© for every i1 > g, there exists at least a ground state of mass y;

@ for every 1 < up, there cannot exist any ground state of mass p.
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Bound states for localized nonlinearities

However, one could be also interested in stationary solutions
Y(t, x) = eu(x) of Gross—Pitaevskii with nonlinearity localized on K,
which are not necessarily minimizers of Ep, that is bound states.
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Bound states for localized nonlinearities

However, one could be also interested in stationary solutions
Y(t, x) = eu(x) of Gross—Pitaevskii with nonlinearity localized on K,
which are not necessarily minimizers of Ep, that is bound states.

A bound state of mass y is a function u € M satisfying:
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Bound states for localized nonlinearities

However, one could be also interested in stationary solutions
Y(t, x) = eu(x) of Gross—Pitaevskii with nonlinearity localized on K,
which are not necessarily minimizers of Ep, that is bound states.

A bound state of mass y is a function u € M satisfying:

(i) there exists A € R such that

u/e/ + Xk (X)’Ue|p_2 Ue = Aue  for every edge e;
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Bound states for localized nonlinearities

However, one could be also interested in stationary solutions
Y(t, x) = eu(x) of Gross—Pitaevskii with nonlinearity localized on K,
which are not necessarily minimizers of Ep, that is bound states.

A bound state of mass y is a function u € M satisfying:

(i) there exists A € R such that
u? + X (X)|uelP2 ue = Aue  for every edge e;

(ii) for every vertex v in K

Z due =0 (Kirchhoff condition),

dxe
erv
where “e = v means that e is incident at v and

due/dxe(V) stands for u,(0) or — u.(¢.) depending on
the orientation of /..
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Existence and multiplicity

Theorem (Serra, T. — JDE, 2016)

For every k € N, there exists fix > 0 such that for all ;1 > jix there exist at
least k distinct pairs (fu;) of bound states of mass ;.. Moreover, for every
j=1,...,k

Em(£u;) <Jj€(pusj) + ok(p) <0

where o, (p) — 0 (exponentially fast) as u — oo. Finally, for each j, the
Lagrange multiplier A; related to u; is positive.
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Existence and multiplicity

Theorem (Serra, T. — JDE, 2016)

For every k € N, there exists fix > 0 such that for all ;1 > jix there exist at

least k distinct pairs (fu;) of bound states of mass ;.. Moreover, for every
j=1,...,k

Em(Fuj) < jE(puy) +ok(p) <0

where o, (p) — 0 (exponentially fast) as u — oo. Finally, for each j, the
Lagrange multiplier A; related to u; is positive.

Remarks:

@ (uj) are constrained critical points of Ep (Berestycki, Lions '83);
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Existence and multiplicity

Theorem (Serra, T. — JDE, 2016)

For every k € N, there exists fix > 0 such that for all ;1 > jix there exist at
least k distinct pairs (fu;) of bound states of mass ;.. Moreover, for every
j=1,...,k

Em(£u;) <Jj€(pusj) + ok(p) <0
where o, (p) — 0 (exponentially fast) as u — oo. Finally, for each j, the
Lagrange multiplier A; related to u; is positive.

Remarks:

@ (uj) are constrained critical points of Ep (Berestycki, Lions '83);

@ everything works even if the nonlinearity is placed on a nontrivial
subgraph of IC (even on a single edge);
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Existence and multiplicity

Theorem (Serra, T. — JDE, 2016)

For every k € N, there exists fix > 0 such that for all ;1 > jix there exist at
least k distinct pairs (fu;) of bound states of mass ;.. Moreover, for every
j=1,...,k

Em(£u;) <Jj€(pusj) + ok(p) <0
where o, (p) — 0 (exponentially fast) as u — oo. Finally, for each j, the
Lagrange multiplier A; related to u; is positive.

Remarks:

@ (uj) are constrained critical points of Ep (Berestycki, Lions '83);

@ everything works even if the nonlinearity is placed on a nontrivial
subgraph of IC (even on a single edge);

@ with the previous notation, u; is a ground state.
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Existence and multiplicity

Theorem (Serra, T. — JDE, 2016)

For every k € N, there exists fix > 0 such that for all ;1 > jix there exist at

least k distinct pairs (fu;) of bound states of mass ;.. Moreover, for every
j=1,...,k

Em(Fuj) < jE(puy) +ok(p) <0

where o, (p) — 0 (exponentially fast) as u — oo. Finally, for each j, the
Lagrange multiplier A; related to u; is positive.

Remarks:

@ (uj) are constrained critical points of Ep (Berestycki, Lions '83);

@ everything works even if the nonlinearity is placed on a nontrivial
subgraph of IC (even on a single edge);

@ with the previous notation, u; is a ground state.

Note: other results on bound states (for a tadpole graph) can be found in
Cacciapuoti, Finco, Noja '15, Noja, Pelinovsky, Shaikhova '15.
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An “intermediate” phenomenon

Take, for istance G

@ In the degenerate case when the interval shrinks to a point (K = ()
the problem becomes linear = there cannot exist any bound state of
mass fi.
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An “intermediate” phenomenon

Take, for istance G

@ In the degenerate case when the interval shrinks to a point (K = ()
the problem becomes linear = there cannot exist any bound state of
mass /i.

@ In the degenerate case when the interval extends to the whole real
line (“KC = G") = there are infinitely many ground states of mass p
(the solitons), but no bound state at higher levels.
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An “intermediate” phenomenon

Take, for istance G

@ In the degenerate case when the interval shrinks to a point (K = ()
the problem becomes linear = there cannot exist any bound state of
mass /i.

@ In the degenerate case when the interval extends to the whole real
line (“KC = G") = there are infinitely many ground states of mass p
(the solitons), but no bound state at higher levels.

Nonlinearity on a “compact portion of positive measure” generates
bound states at higher energies!
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Existence of a bound state for any value of .
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Existence of a bound state for any value of u. Precisely, when
p € [4,6) and u < po, that is the case where there is no ground state.
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Bound states multiplicity, in the L?>-subcritical case, for the
“nonlocalized” problem.
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p € [4,6) and u < po, that is the case where there is no ground state.

Bound states multiplicity, in the L?>-subcritical case, for the
“nonlocalized” problem.
Challenge: lack of compactness at infinitely many levels.
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p € [4,6) and u < po, that is the case where there is no ground state.

Bound states multiplicity, in the L?>-subcritical case, for the
“nonlocalized” problem.
Challenge: lack of compactness at infinitely many levels.

Ground and bound states in the L?—critical case, p = 6 (ground states
in the nonlocalized case — Adami, Serra, Tilli, forthcoming).
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Existence of a bound state for any value of u. Precisely, when
p € [4,6) and u < po, that is the case where there is no ground state.

Bound states multiplicity, in the L?>-subcritical case, for the
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Ground and bound states in the L?—critical case, p = 6 (ground states
in the nonlocalized case — Adami, Serra, Tilli, forthcoming).

Second order correction to Gross-Pitaevskii, namely
i0e) = =030 — [Py —[o|*
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Some open issues

Existence of a bound state for any value of u. Precisely, when
p € [4,6) and u < po, that is the case where there is no ground state.

Bound states multiplicity, in the L?>-subcritical case, for the
“nonlocalized” problem.
Challenge: lack of compactness at infinitely many levels.

Ground and bound states in the L?—critical case, p = 6 (ground states
in the nonlocalized case — Adami, Serra, Tilli, forthcoming).

Second order correction to Gross-Pitaevskii, namely
i0e) = =030 — [Py —[o|*

(and so on...)

NLS on multidimensional structures, as for instance simplicial
complexes.
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ATTENTION!




Sketch of proof: level argument for ground states

The first part follows from the fact that one can exhibit sequences
(Vk) C M such that limy EM(vk) =0.
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Sketch of proof: level argument for ground states

The first part follows from the fact that one can exhibit sequences
(Vk) C M such that limy EM(vk) =0.

Subsequently, from the LP version of the Gagliardo—Nirenberg inequality
on g,

L+1
lullZo(g) < Collull 2 HUHng Yu € HY(G),
(9) (9)

there results that each minimizing sequence (ux) C M is bounded in

HY(G).
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Sketch of proof: level argument for ground states

The first part follows from the fact that one can exhibit sequences
(Vk) C M such that limy EM(vk) =0.

Subsequently, from the LP version of the Gagliardo—Nirenberg inequality
on g,

2+1

||UH/_p g)<c HUH HU”L2(g) Yu € H? (9),

there results that each minimizing sequence (ux) C M is bounded in

HY(G).
Then vy — v in HY(G) and uy — u in LP(G), so that

E(u) < Iimkinf En(ug).

Since inf,cp Ep(v) < O prevents ||u\|%2(g) <, u solves (P).
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Sketch of proof: existence for ground states
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Sketch of proof: existence for ground states

For aw € (0,/p/L) and m = “;AC;% consider the competitor u defined by

«@ in
u(x):{ o2x

«e” 2m in each half-line.
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Sketch of proof: existence for ground states

For aw € (0,/p/L) and m = “;AC;% consider the competitor u defined by

«@ in
u(x):{ o2x

«e” 2m in each half-line.

Hence u € M and
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Sketch of proof: existence for ground states

For aw € (0,/p/L) and m = “;AC,“zL consider the competitor u defined by

«@ in
u(x):{ o2x

«e” 2m in each half-line.

Hence u € M and

a* N2 aPL
) = §—a2D) ~ p

e If p€(2,4), then Ep(u) < 0 provided « is small.
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Sketch of proof: existence for ground states

For o € (0,/p/L) and m = “;AC,“zL consider the competitor u defined by

«@ in
u(x):{ o2x

«e” 2m in each half-line.

Hence u € M and

a* N2 aPL
) = §—a2D) ~ p

e If p€(2,4), then Ep(u) < 0 provided « is small.

o If pe[4,6) and > py = (cpNﬁ/L)% (where L = meas(K), N is
the number of unbounded edges of G and ¢, is a positive constant
depending only on p), then there is a value ag € (0, \/p/L) such that
EM(U) < 0.
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Sketch of proof: existence for ground states

For o € (0,/p/L) and m = “;AC,“zL consider the competitor u defined by

«@ in
u(x):{ o2x

«e” 2m in each half-line.

Hence u € M and

a* N2 aPL
) = §—a2D) ~ p

e If p€(2,4), then Ep(u) < 0 provided « is small.

o If pe[4,6) and > py = (cpNﬁ/L)% (where L = meas(K), N is
the number of unbounded edges of G and ¢, is a positive constant
depending only on p), then there is a value ag € (0, \/p/L) such that
EM(U) < 0.

Note: the competitor u is never a minimizer.
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Sketch of proof: nonexistence for ground states

Since infyep Epm(v) <0 for all > 0, it is sufficient to find p2 > 0 such

that for all ;< pp and all u € M = {u € HY(G) : HuHL2 @) = = u} there
results

EM(U) > 0.
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Sketch of proof: nonexistence for ground states

Since infyep Epm(v) <0 for all > 0, it is sufficient to find p2 > 0 such

that for all ;< pp and all u € M = {u € HY(G) : HuHL2 @) = i} there
results

EM(U) > 0.
By an inductive argument one sees that Ep(u) < 0 entails
/ 1 ()" 04 ) (8)
1z <z lullf 8y (Cnt)=H@ oo,
Cop
by a repeated use of the L° version of the Gagliardo—Nirenberg inequality

1/2 1/2
lulle gy < Coollullhig Il 4Gy ¥u € HY(G).
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Sketch of proof: nonexistence for ground states

Then Vn >0
122y < C23(Co LY fp
2 o o o e G-t
””HL2( <Cg pM6p<CP CSP po—0G—p [ 2 4) if p> 4.
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Sketch of proof: nonexistence for ground states

Then Vn >0
'l 2gy < Cor(Caonl)™ if p =4

4p 4 _ (B)”H*l
2 6 p+2 i s M 4\ 4 .
[u']72gy < Cp ”uﬁ P C&TCp P =) L =2 if p> 4.

If the terms in brackets are < 1, that is

6—p

,u<u2:<L 1C6"C ) ,

‘U
N

then ||u’||%2(g) =0.
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Sketch of proof: nonexistence for ground states

Then Vn >0
'l 2gy < Cor(Caonl)™ if p =4

4p 4 _ (B)”+1 1
2 6 p+2 i s M 4\ 4 .
[u']72gy < Cp ”uﬁ P C&TCp P =) L =2 if p> 4.

If the terms in brackets are < 1, that is

o

—p

,u<u2:<L 1C6"C ) ,

‘U
N

then ||u’||%2(g) = 0. Since u € H(G), there follows that u = 0, but this is
a contradiction with Hu||%2(g) =pu >0 = Ep{)<0.
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Sketch of proof: bound states
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Sketch of proof: bound states

e For A C HY(G)\{0} closed and symmetric, recall that the
Krasnosel'skii genus of A is the natural number defined by

v(A) =min{n € N: 3f : A— R"\{0} odd and continuous}.
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Sketch of proof: bound states

e For A C HY(G)\{0} closed and symmetric, recall that the
Krasnosel'skii genus of A is the natural number defined by

v(A) =min{n € N: 3f : A— R"\{0} odd and continuous}.
@ A sequence (ux) C M is called a Palais—-Smale sequence at level c if
EM(uk) — ¢ and HEI/\/I(uk)H('EUM)’ —0

and Ejy is said to satisfy the Palais—=Smale condition at c if every
Palais—Smale sequence at ¢ admits a subsequence converging in M.
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Sketch of proof: bound states

e For A C HY(G)\{0} closed and symmetric, recall that the
Krasnosel'skii genus of A is the natural number defined by

v(A) =min{n € N: 3f : A— R"\{0} odd and continuous}.
@ A sequence (ux) C M is called a Palais—-Smale sequence at level c if
EM(uk) — ¢ and HEI/\/I(uk)H('EUM)’ —0

and Ejy is said to satisfy the Palais—=Smale condition at c if every
Palais—Smale sequence at ¢ admits a subsequence converging in M.

Then, define the min—max levels

¢; = inf max Ey(u
T Aer; ueA (u),

where ['; = {A C M : A symmetric, compact, y(A) > j}.
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Sketch of proof: bound states

From Critical Point Theory we know that:

if ¢; € R and Ej satisfies the Palais—=Smale condition
at level ¢j, then ¢ is a critical level for Epy.
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Sketch of proof: bound states

From Critical Point Theory we know that:

if ¢; € R and Ej satisfies the Palais—=Smale condition
at level ¢j, then ¢ is a critical level for Epy.

Now, as Ep; is bounded from below and satisfies the Palais—Smale
condition only at negative levels,
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Sketch of proof: bound states

From Critical Point Theory we know that:

if ¢; € R and Ej satisfies the Palais—=Smale condition
at level ¢j, then ¢ is a critical level for Epy.

Now, as Ep; is bounded from below and satisfies the Palais—Smale
condition only at negative levels,

it is sufficient to find a compact, symmetric set A C M,
with v(A) > k and Ep(u) < 0 for every u € A.
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Sketch of proof: bound states

From Critical Point Theory we know that:

if ¢; € R and Ej satisfies the Palais—=Smale condition
at level ¢j, then ¢ is a critical level for Epy.

Now, as Ep; is bounded from below and satisfies the Palais—Smale
condition only at negative levels,

it is sufficient to find a compact, symmetric set A C M,
with v(A) > k and Ep(u) < 0 for every u € A.

Since this entails ¢, < 0 and, by definition, ¢t < ¢ < -+ < ¢k.
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Sketch of proof: bound states

Pu/k

For fixed k, consider a soliton of mass 1/k
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Sketch of proof: bound states

Pu/k

For fixed k, consider a soliton of mass u/k, cut—off its “tails”
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Sketch of proof: bound states

Y

For fixed k, consider a soliton of mass u/k, cut—off its “tails”, lower it and
arrange the mass (HwHLQ(]R = n/k).

Lorenzo Tentarelli Politecnico di Torino Bressanone — 09/02/2016



Sketch of proof: bound states

Y1 Y2 Y3 (o

Vi € Vo
For fixed k, consider a soliton of mass u/k, cut—off its “tails”, lower it and
arrange the mass (\|¢Hf2(R) = p/k).
Now place k copies of 1/ on an edge of K and define h: SK~1 — M as

h(0) = Vk (0191 + 02105 + - - + Oktd).
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Sketch of proof: bound states

Y1 Y2 Y3 (o

Vi € Vo
For fixed k, consider a soliton of mass u/k, cut—off its “tails”, lower it and
arrange the mass (\|¢Hf2(R) = p/k).
Now place k copies of 1/ on an edge of K and define h: SK~1 — M as

h(0) = Vk (0101 + 2tp2 + - - + Oxtdyc).
Then, one can check that the required set is given by

A = h(Sk71).
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