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Physical Background

Why graphs?

They provide one–dimensional approximations for constrained dynamics in
which transversal dimensions are small with respect to longitudinal ones.

Why NLS on graphs?

Model for Bose–Einstein condensates in ramified traps, optical fibers, ...
(see e.g. Dalfovo, Giorgini, Pitaevskii, Stringari ’99, Gnutzmann, Smilanski
’06, Gnutzmann, Smilanski, Derevyanko ’11, Noja ’14).

Note: experimental evidence for BEC in ramified traps (e.g. Tokuno et al.
’08, Hung et al. ’11, Lorenzo et al. ’14).
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Basics on metric graphs

A metric graph is a multigraph G = (V,E), where each edge e joining two
vertices v1 and v2 is associated either with a closed bounded interval

Ie = [0, `e ] ⊂ R ⇒ e is bounded

or with a closed half–line

Ie = [0,+∞) ⊂ R ⇒ e is unbounded.

Each Ie is endowed with a coordinate xe , so that v1 corresponds to xe = 0
and v2 to xe = `e

v1

v2

e
0 `e

Note: half–lines are always attached to the graph at xe = 0.
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Examples

∞ ∞

∞

Fig.1: 19 edges (2 self-loops, 2 multiple, 3 unbounded),

13 vertices (1 of degree two, 3 at infinity).

∞ ∞

∞

∞

Fig.2: 4 edges (unbounded), 5 vertices (4 at infinity).
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Functions on graphs

A function u : G → R has to be regarded as a family of functions
u = (ue)e∈E, with

ue : Ie → R ∀e ∈ E.

Then, Lp(G) is defined as the set of functions u such that

ue ∈ Lp(Ie) ∀e ∈ E, with norm ‖u‖pLp(G) =
∑
e∈E
‖ue‖pLp(Ie)

and H1(G) as the set of continuous functions u (continuity means no
jumps at vertices) such that

ue ∈ H1(Ie) ∀e ∈ E, with norm ‖u‖2
H1(G) =

∑
e∈E
‖ue‖2

H1(Ie).
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Stationary solutions

General problem: find stationary solutions of the cubic Gross–Pitaevskii
equation on G (focusing case),

that is functions of the form

ψ(t, x) = e iλtu(x), λ ∈ R, u : G → R,

that satisfy
i∂tψ = −∂2

xxψ − |ψ|2ψ on G

with homogeneous Kirchhoff conditions at the vertices. If u is a minimizer
of the NLS energy

E(v) =
1

2
‖v ′‖2

L2(G) −
1

4
‖v‖4

L4(G)

1

p
‖v‖pLp(G)

in M = {v ∈ H1(G) : ‖v‖2
L2(G) = µ} (namely, a ground state of mass µ),

then ψ(t, x) = e iλtu(x) is so. ⇒ Search for ground states

Note: we focus on the generalized issue, with 4 replaced by p ≥ 2.
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Examples: real line and half–line

When G = R, for p ∈ (2, 6) and µ > 0, ground states exist and are
translates of the soliton, namely ϕµ : R→ R+ such that

ϕµ(x) = Cµ
2

6−p sech
2

p−2 (cµ
p−2
6−p x),

(Zakharov, Shabat ’72, Cazenave, Lions ’82).

When G = R+, for p ∈ (2, 6) and µ > 0, there is exactly one (positive)
ground state given by half a soliton, namely ϕ̂µ : R+ → R+ such that

ϕ̂µ(x) = ϕ2µ(x).

ϕµ

ϕ̂µ

Note: one can prove that E(ϕ̂µ) < E(ϕµ) < 0.
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Examples: N–star graphs

When G is an N–star graph, that is a graph consisting of 1 vertex and N
half–lines,

∞ ∞

∞

∞

case N = 4

then for p ∈ (2, 6) and µ > 0

inf
u∈M
E(u) = E(ϕµ),

but the infimum is not attained ⇒ no ground state (Adami, Cacciapuoti,
Finco, Noja ’12).
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Abstract results

Recently Adami, Serra and Tilli (’14 – ’15) addressed the problem of an
arbitrary noncompact graph G, again in the case

p ∈ (2, 6) ⇐ L2–subcritical case.

In particular, they proved that

E(ϕ̂µ) ≤ inf
u∈M
E(u) ≤ E(ϕµ)

and that

inf
u∈M
E(u) < E(ϕµ) ⇒ the infimum is attained.

Examples:

∞

Tadpole graph

∞ ∞

Signpost graph
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Abstract results

Moreover, they proved that if G satisfies assumption (H), namely

(H)

after removing an arbitrary edge from G

every resulting connected component

contains at least one vertex at infinity

then the infimum is never attained unless G is the real line or a tower of
bubbles.

∞ ∞ ∞ ∞ ∞ ∞

Some towers of bubbles
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Compact core

Question: what happens when the nonlinearity affects only a compact
portion of G? (Gnutzmann, Smilanski, Derevyanko ’11).

In order to answer this question, let us give the following definition.

The compact core of G, denoted by K, is the metric
subgraph of G consisting of all its bounded edges.

Examples:

∞ ∞

∞

Compact core

Compact core
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Ground states for localized nonlinearities

Let K be nonempty and p ∈ [2,∞).

Now, we define the NLS energy with
a localized nonlinearity as the functional E : H1(G)→ R such that

E (u) =
1

2
‖u′‖2

L2(G) −
1

p
‖u‖pLp(K)

and denote by EM the restriction of E to the manifold

M = {v ∈ H1(G) : ‖v‖2
L2(G) = µ}.

Then, the issue of the ground states of mass µ reads:

(P)
to find functions u ∈ M such that

EM(u) = inf
v∈M

EM(v).
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Existence/nonexistence

Theorem (T. – JMAA, 2016)

Let p ∈ (2, 6) and µ > 0. Then infv∈M EM(v) ≤ 0. Moreover,

inf
v∈M

EM(v) < 0 ⇒ the infimum is attained.

Theorem (T. – JMAA, 2016)

If p ∈ (2, 4), then for every µ > 0 there exists at least a ground state
of mass µ.

If p ∈ [4, 6), then there exist two constants µ1, µ2 > 0 such that:

1 for every µ > µ1, there exists at least a ground state of mass µ;

2 for every µ < µ2, there cannot exist any ground state of mass µ.
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Bound states for localized nonlinearities

However, one could be also interested in stationary solutions
ψ(t, x) = e iλtu(x) of Gross–Pitaevskii with nonlinearity localized on K,
which are not necessarily minimizers of EM , that is bound states.

A bound state of mass µ is a function u ∈ M satisfying:

(i) there exists λ ∈ R such that

u′′e + χK(x)|ue |p−2 ue = λue for every edge e;

(ii) for every vertex v in K∑
e�v

due
dxe

(v) = 0 (Kirchhoff condition),

where “e � v” means that e is incident at v and

due/dxe(v) stands for u′e(0) or − u′e(`e) depending on

the orientation of Ie .
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Existence and multiplicity

Theorem (Serra, T. – JDE, 2016)

For every k ∈ N, there exists µ̃k > 0 such that for all µ ≥ µ̃k there exist at
least k distinct pairs (±uj) of bound states of mass µ. Moreover, for every
j = 1, . . . , k

EM(±uj) ≤ jE(ϕµ/j) + σk(µ) < 0

where σk(µ)→ 0 (exponentially fast) as µ→∞. Finally, for each j , the
Lagrange multiplier λj related to uj is positive.

Remarks:

(±uj) are constrained critical points of EM (Berestycki, Lions ’83);

everything works even if the nonlinearity is placed on a nontrivial
subgraph of K (even on a single edge);

with the previous notation, u1 is a ground state.

Note: other results on bound states (for a tadpole graph) can be found in
Cacciapuoti, Finco, Noja ’15, Noja, Pelinovsky, Shaikhova ’15.
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An “intermediate” phenomenon

Take, for istance G

∞ ∞
K

In the degenerate case when the interval shrinks to a point (K = ∅)
the problem becomes linear ⇒ there cannot exist any bound state of
mass µ.

In the degenerate case when the interval extends to the whole real
line (“K = G”) ⇒ there are infinitely many ground states of mass µ
(the solitons), but no bound state at higher levels.

Nonlinearity on a “compact portion of positive measure” generates
bound states at higher energies!

Lorenzo Tentarelli Politecnico di Torino Bressanone – 09/02/2016



An “intermediate” phenomenon

Take, for istance G

∞ ∞
K

In the degenerate case when the interval shrinks to a point (K = ∅)
the problem becomes linear ⇒ there cannot exist any bound state of
mass µ.

In the degenerate case when the interval extends to the whole real
line (“K = G”) ⇒ there are infinitely many ground states of mass µ
(the solitons), but no bound state at higher levels.

Nonlinearity on a “compact portion of positive measure” generates
bound states at higher energies!

Lorenzo Tentarelli Politecnico di Torino Bressanone – 09/02/2016



An “intermediate” phenomenon

Take, for istance G

∞ ∞
K

In the degenerate case when the interval shrinks to a point (K = ∅)
the problem becomes linear ⇒ there cannot exist any bound state of
mass µ.

In the degenerate case when the interval extends to the whole real
line (“K = G”) ⇒ there are infinitely many ground states of mass µ
(the solitons), but no bound state at higher levels.

Nonlinearity on a “compact portion of positive measure” generates
bound states at higher energies!

Lorenzo Tentarelli Politecnico di Torino Bressanone – 09/02/2016



An “intermediate” phenomenon

Take, for istance G

∞ ∞
K

In the degenerate case when the interval shrinks to a point (K = ∅)
the problem becomes linear ⇒ there cannot exist any bound state of
mass µ.

In the degenerate case when the interval extends to the whole real
line (“K = G”) ⇒ there are infinitely many ground states of mass µ
(the solitons), but no bound state at higher levels.

Nonlinearity on a “compact portion of positive measure” generates
bound states at higher energies!

Lorenzo Tentarelli Politecnico di Torino Bressanone – 09/02/2016



An “intermediate” phenomenon

Take, for istance G

∞ ∞
K

In the degenerate case when the interval shrinks to a point (K = ∅)
the problem becomes linear ⇒ there cannot exist any bound state of
mass µ.

In the degenerate case when the interval extends to the whole real
line (“K = G”) ⇒ there are infinitely many ground states of mass µ
(the solitons), but no bound state at higher levels.

Nonlinearity on a “compact portion of positive measure” generates
bound states at higher energies!

Lorenzo Tentarelli Politecnico di Torino Bressanone – 09/02/2016



Some open issues

1 Existence of a bound state for any value of µ. Precisely, when
p ∈ [4, 6) and µ < µ2, that is the case where there is no ground state.

2 Bound states multiplicity, in the L2–subcritical case, for the
“nonlocalized” problem.
Challenge: lack of compactness at infinitely many levels.

3 Ground and bound states in the L2–critical case, p = 6 (ground states
in the nonlocalized case – Adami, Serra, Tilli, forthcoming).

4 Second order correction to Gross-Pitaevskii, namely

i∂tψ = −∂2
xxψ − |ψ|2ψ −|ψ|4ψ

(and so on...)

5 NLS on multidimensional structures, as for instance simplicial
complexes.
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Sketch of proof: level argument for ground states

The first part follows from the fact that one can exhibit sequences
(vk) ⊂ M such that limk EM(vk) = 0.

Subsequently, from the Lp version of the Gagliardo–Nirenberg inequality
on G,

‖u‖pLp(G) ≤ Cp‖u‖
p
2

+1

L2(G)
‖u′‖

p
2
−1

L2(G)
∀u ∈ H1(G),

there results that each minimizing sequence (uk) ⊂ M is bounded in
H1(G).

Then uk ⇀ u in H1(G) and uk → u in Lp(G), so that

E (u) ≤ lim inf
k

EM(uk).

Since infv∈M EM(v) < 0 prevents ‖u‖2
L2(G) < µ, u solves (P).
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Sketch of proof: existence for ground states

For α ∈ (0,
√
µ/L) and m = µ−α2L

N , consider the competitor u defined by

u(x) =

{
α in K
αe−

α2x
2m in each half–line.

Hence u ∈ M and

EM(u) =
α4N2

8(µ− α2L)
− αpL

p
.

If p ∈ (2, 4), then EM(u) < 0 provided α is small.

If p ∈ [4, 6) and µ > µ1 := (cpN
4

6−p /L)
6−p
p−2 (where L = meas(K), N is

the number of unbounded edges of G and cp is a positive constant
depending only on p), then there is a value α0 ∈ (0,

√
µ/L) such that

EM(u) < 0.

Note: the competitor u is never a minimizer.
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Sketch of proof: nonexistence for ground states

Since infv∈M EM(v) ≤ 0 for all µ > 0, it is sufficient to find µ2 > 0 such
that for all µ < µ2 and all u ∈ M = {u ∈ H1(G) : ‖u‖2

L2(G) = µ} there
results

EM(u) > 0.

By an inductive argument one sees that EM(u) ≤ 0 entails

‖u′‖L2(G)2 ≤
1

C4
∞µ
‖u‖4( p

4
)n+1

L∞(G) (C4
∞µL)

∑n
i=1( p

4
)i ∀n ≥ 0,

by a repeated use of the L∞ version of the Gagliardo–Nirenberg inequality

‖u‖L∞(G) ≤ C∞‖u‖
1/2
L2(G)
‖u′‖1/2

L2(G)
∀u ∈ H1(G).
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Sketch of proof: nonexistence for ground states

Then ∀n ≥ 0

‖u′‖2
L2(G) ≤ C

2
pµ

3(C4
∞µL)n+1 if p = 4

‖u′‖2
L2(G) ≤ C

4
6−p
p µ

p+2
6−p

(
C

4p
p−4
∞ C

4
6−p
p µ

4(p−2)
(p−4)(6−p)L

4
p−4

)( p
4

)n+1−1

if p > 4.

If the terms in brackets are < 1, that is

µ < µ2 =

(
L−1C

4−p
6−p
p C−p∞

) 6−p
p−2

,

then ‖u′‖2
L2(G) = 0. Since u ∈ H1(G), there follows that u ≡ 0, but this is

a contradiction with ‖u‖2
L2(G) = µ > 0 ⇒ EM(u) ≤ 0.
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Sketch of proof: bound states

For A ⊂ H1(G)\{0} closed and symmetric, recall that the
Krasnosel’skii genus of A is the natural number defined by

γ(A) = min{n ∈ N : ∃f : A→ Rn\{0} odd and continuous}.

A sequence (uk) ⊂ M is called a Palais–Smale sequence at level c if

EM(uk)→ c and ‖E ′M(uk)‖(TuM)′ → 0

and EM is said to satisfy the Palais–Smale condition at c if every
Palais–Smale sequence at c admits a subsequence converging in M.

Then, define the min–max levels

cj = inf
A∈Γj

max
u∈A

EM(u),

where Γj = {A ⊂ M : A symmetric, compact, γ(A) ≥ j}.

Lorenzo Tentarelli Politecnico di Torino Bressanone – 09/02/2016



Sketch of proof: bound states

For A ⊂ H1(G)\{0} closed and symmetric, recall that the
Krasnosel’skii genus of A is the natural number defined by

γ(A) = min{n ∈ N : ∃f : A→ Rn\{0} odd and continuous}.

A sequence (uk) ⊂ M is called a Palais–Smale sequence at level c if

EM(uk)→ c and ‖E ′M(uk)‖(TuM)′ → 0

and EM is said to satisfy the Palais–Smale condition at c if every
Palais–Smale sequence at c admits a subsequence converging in M.

Then, define the min–max levels

cj = inf
A∈Γj

max
u∈A

EM(u),

where Γj = {A ⊂ M : A symmetric, compact, γ(A) ≥ j}.

Lorenzo Tentarelli Politecnico di Torino Bressanone – 09/02/2016



Sketch of proof: bound states

For A ⊂ H1(G)\{0} closed and symmetric, recall that the
Krasnosel’skii genus of A is the natural number defined by

γ(A) = min{n ∈ N : ∃f : A→ Rn\{0} odd and continuous}.

A sequence (uk) ⊂ M is called a Palais–Smale sequence at level c if

EM(uk)→ c and ‖E ′M(uk)‖(TuM)′ → 0

and EM is said to satisfy the Palais–Smale condition at c if every
Palais–Smale sequence at c admits a subsequence converging in M.

Then, define the min–max levels

cj = inf
A∈Γj

max
u∈A

EM(u),

where Γj = {A ⊂ M : A symmetric, compact, γ(A) ≥ j}.

Lorenzo Tentarelli Politecnico di Torino Bressanone – 09/02/2016



Sketch of proof: bound states

For A ⊂ H1(G)\{0} closed and symmetric, recall that the
Krasnosel’skii genus of A is the natural number defined by

γ(A) = min{n ∈ N : ∃f : A→ Rn\{0} odd and continuous}.

A sequence (uk) ⊂ M is called a Palais–Smale sequence at level c if

EM(uk)→ c and ‖E ′M(uk)‖(TuM)′ → 0

and EM is said to satisfy the Palais–Smale condition at c if every
Palais–Smale sequence at c admits a subsequence converging in M.

Then, define the min–max levels

cj = inf
A∈Γj

max
u∈A

EM(u),

where Γj = {A ⊂ M : A symmetric, compact, γ(A) ≥ j}.

Lorenzo Tentarelli Politecnico di Torino Bressanone – 09/02/2016



Sketch of proof: bound states

From Critical Point Theory we know that:

if cj ∈ R and EM satisfies the Palais–Smale condition
at level cj , then cj is a critical level for EM .

Now, as EM is bounded from below and satisfies the Palais–Smale
condition only at negative levels,

it is sufficient to find a compact, symmetric set A ⊂ M,
with γ(A) ≥ k and EM(u) < 0 for every u ∈ A.

Since this entails ck < 0 and, by definition, c1 ≤ c2 ≤ · · · ≤ ck .
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Sketch of proof: bound states

ϕµ/k

v1 v2

For fixed k, consider a soliton of mass µ/k

, cut–off its “tails”, lower it and
arrange the mass (‖ψ‖2

L2(R) = µ/k).

Now place k copies of ψ on an edge of K and define h : Sk−1 → M as

h(θ) =
√
k (θ1ψ1 + θ2ψ2 + · · ·+ θkψk).

Then, one can check that the required set is given by

A = h(Sk−1).
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