On semiclassical limiting eigenvalue distribution theorems for the hydrogen atom in a weak and constant magnetic field.

Carlos Villegas-Blas

Instituto de Matematicas - UNAM

Mathematical Challenges in Quantum Mechanics. Bressanone, Italy, February 8-13, 2016.

Joint work with Misael Avendaño-Camacho, Universidad de Sonora, Mexico. Peter D. Hislop, University of Kentucky, USA

Carlos Villegas-Blas On semiclassical limiting eigenvalue distribution theor

Let $S^n = \{x \in \mathbb{R}^{n+1} \mid |x| = 1\}$ be the n-sphere , $n \ge 2$. Let Δ_{S^n} be the Laplacian on S^n .

The spectrum of Δ_{S^n} consists of discrete eigenvalues $\lambda_{\ell} = \left(\ell + \frac{n-1}{2}\right)^2$ with multiplicity $d_{\ell} = O(\ell^{n-1}), \ \ell = 0, 1, \dots$

Let $V: S^n \to \mathbb{R}$ be a continuous potential. Consider the Schrödinger operator $H = \Delta_{S^n} + V$ densely defined on $L^2(S^n)$.

The spectrum of H is discrete and, sufficiently far form the origin, consists of clusters of eigenvalues of size no larger than $||V||_{\infty}$ around λ_{ℓ} . Each cluster has as many as d_{ℓ} eigenvalues counting multiplicity.

Notation: For ℓ fixed and sufficiently large, denote the eigenvalues of H within the ℓ th cluster by $\lambda_{\ell,m}$, $m = 1, 2, \dots, d_{\ell}$, $\lambda_{\ell,m}$, $m = 1, 2, \dots, d_{\ell}$, $\lambda_{\ell,m}$, $m = 1, 2, \dots, d_{\ell}$.

Let $S^n = \{x \in \mathbb{R}^{n+1} \mid |x| = 1\}$ be the n-sphere , $n \ge 2$. Let Δ_{S^n} be the Laplacian on S^n .

The spectrum of Δ_{S^n} consists of discrete eigenvalues $\lambda_{\ell} = \left(\ell + \frac{n-1}{2}\right)^2$ with multiplicity $d_{\ell} = O(\ell^{n-1}), \ \ell = 0, 1, \dots$

Let $V: S^n \to \mathbb{R}$ be a continuous potential. Consider the Schrödinger operator $H = \Delta_{S^n} + V$ densely defined on $L^2(S^n)$.

The spectrum of H is discrete and, sufficiently far form the origin, consists of clusters of eigenvalues of size no larger than $||V||_{\infty}$ around λ_{ℓ} . Each cluster has as many as d_{ℓ} eigenvalues counting multiplicity.

Notation: For ℓ fixed and sufficiently large, denote the eigenvalues of H within the ℓ th cluster by $\lambda_{\ell,m}$, $m = 1, 2, \dots, d_{\ell}$, $\lambda_{\ell,m}$, $m = 1, 2, \dots, d_{\ell}$,

Let $S^n = \{x \in \mathbb{R}^{n+1} \mid |x| = 1\}$ be the n-sphere , $n \ge 2$. Let Δ_{S^n} be the Laplacian on S^n .

The spectrum of Δ_{S^n} consists of discrete eigenvalues $\lambda_{\ell} = \left(\ell + \frac{n-1}{2}\right)^2$ with multiplicity $d_{\ell} = O(\ell^{n-1}), \ \ell = 0, 1, \dots$

Let $V: S^n \to \mathbb{R}$ be a continuous potential. Consider the Schrödinger operator $H = \Delta_{S^n} + V$ densely defined on $L^2(S^n)$.

The spectrum of H is discrete and, sufficiently far form the origin, consists of clusters of eigenvalues of size no larger than $||V||_{\infty}$ around λ_{ℓ} . Each cluster has as many as d_{ℓ} eigenvalues counting multiplicity.

Notation: For ℓ fixed and sufficiently large, denote the eigenvalues of H within the ℓ th cluster by $\lambda_{\ell,m}$, $m = 1, 2, \dots, d_{\ell}$, $\lambda_{\ell,m}$, $m = 1, 2, \dots, d_{\ell}$.

Let $S^n = \{x \in \mathbb{R}^{n+1} \mid |x| = 1\}$ be the n-sphere , $n \ge 2$. Let Δ_{S^n} be the Laplacian on S^n .

The spectrum of Δ_{S^n} consists of discrete eigenvalues $\lambda_{\ell} = \left(\ell + \frac{n-1}{2}\right)^2$ with multiplicity $d_{\ell} = O(\ell^{n-1}), \ \ell = 0, 1, \dots$

Let $V: S^n \to \mathbb{R}$ be a continuous potential. Consider the Schrödinger operator $H = \Delta_{S^n} + V$ densely defined on $L^2(S^n)$.

The spectrum of H is discrete and, sufficiently far form the origin, consists of clusters of eigenvalues of size no larger than $||V||_{\infty}$ around λ_{ℓ} . Each cluster has as many as d_{ℓ} eigenvalues counting multiplicity.

Notation: For ℓ fixed and sufficiently large, denote the eigenvalues of H within the ℓ th cluster by $\lambda_{\ell,m}$, $m = 1, 2, \dots, d_{\ell}$, $\ell = 1, \dots,$

Let $S^n = \{x \in \mathbb{R}^{n+1} \mid |x| = 1\}$ be the n-sphere , $n \ge 2$. Let Δ_{S^n} be the Laplacian on S^n .

The spectrum of Δ_{S^n} consists of discrete eigenvalues $\lambda_{\ell} = \left(\ell + \frac{n-1}{2}\right)^2$ with multiplicity $d_{\ell} = O(\ell^{n-1}), \ \ell = 0, 1, \dots$

Let $V: S^n \to \mathbb{R}$ be a continuous potential. Consider the Schrödinger operator $H = \Delta_{S^n} + V$ densely defined on $L^2(S^n)$.

The spectrum of H is discrete and, sufficiently far form the origin, consists of clusters of eigenvalues of size no larger than $||V||_{\infty}$ around λ_{ℓ} . Each cluster has as many as d_{ℓ} eigenvalues counting multiplicity.

Notation: For ℓ fixed and sufficiently large, denote the eigenvalues of H within the ℓ th cluster by $\lambda_{\ell,m}$, $m = 1, 2, \dots, d_{\ell}$.

Theorem (A. Weinstein)

Let $F \in C_0^\infty(\mathbb{R})$ and $V: S^n \to \mathbb{R}$ continuous. Then

$$\lim_{\ell \to \infty} \frac{1}{d_{\ell}} \sum_{m=0}^{d_{\ell}} F(\lambda_{\ell,m} - \lambda_{\ell}) = \int_{\gamma \in \Gamma} F(\hat{V}(\gamma)) d\nu(\gamma)$$

with $\Gamma =$ space of oriented geodesics of S^n , and $\hat{V} : \Gamma \to \mathbb{R}$ the Radon transform of V.

$$\hat{V}:\Gamma
ightarrow \mathbb{R}$$
 given by

$$\hat{V}(\gamma) = \frac{1}{2\pi} \int_0^{2\pi} V(\gamma(s)) ds, \ \gamma \in \Gamma.$$

with $\gamma(s)$ a parametrization of γ with respect to arc length s.

 $d\nu$ is the SO(n+1)-invariant normalized measure on Γ .

Note the appearence of the classical Hamiltonian flow (the geodesic flow in this case) corresponding to the quantum unperturbed problem (the Laplacian on S^n).

Theorem (A. Weinstein)

Let $F \in C_0^\infty(\mathbb{R})$ and $V : S^n \to \mathbb{R}$ continuous. Then

$$\lim_{\ell \to \infty} \frac{1}{d_{\ell}} \sum_{m=0}^{d_{\ell}} F(\lambda_{\ell,m} - \lambda_{\ell}) = \int_{\gamma \in \Gamma} F(\hat{V}(\gamma)) d\nu(\gamma)$$

with $\Gamma =$ space of oriented geodesics of S^n , and $\hat{V} : \Gamma \to \mathbb{R}$ the Radon transform of V.

 $\hat{V}:\Gamma\rightarrow\mathbb{R}$ given by

$$\hat{V}(\gamma) = \frac{1}{2\pi} \int_0^{2\pi} V(\gamma(s)) ds, \ \gamma \in \Gamma.$$

with $\gamma(s)$ a parametrization of γ with respect to arc length s.

 $d\nu$ is the SO(n+1)-invariant normalized measure on Γ .

Note the appearence of the classical Hamiltonian flow (the geodesic flow in this case) corresponding to the quantum unperturbed problem (the Laplacian on S^n).

Theorem (A. Weinstein)

Let $F \in C_0^\infty(\mathbb{R})$ and $V : S^n \to \mathbb{R}$ continuous. Then

$$\lim_{\ell \to \infty} \frac{1}{d_{\ell}} \sum_{m=0}^{d_{\ell}} F(\lambda_{\ell,m} - \lambda_{\ell}) = \int_{\gamma \in \Gamma} F(\hat{V}(\gamma)) d\nu(\gamma)$$

with $\Gamma =$ space of oriented geodesics of S^n , and $\hat{V} : \Gamma \to \mathbb{R}$ the Radon transform of V.

 $\hat{V}:\Gamma\rightarrow\mathbb{R}$ given by

$$\hat{V}(\gamma) = \frac{1}{2\pi} \int_0^{2\pi} V(\gamma(s)) ds, \ \gamma \in \Gamma.$$

with $\gamma(s)$ a parametrization of γ with respect to arc length s.

 $d\nu$ is the SO(n+1)-invariant normalized measure on Γ .

Note the appearence of the classical Hamiltonian flow (the geodesic flow in this case) corresponding to the quantum unperturbed problem (the Laplacian on S^n).

For ℓ sufficiently large, consider the Riesz projector P_{ℓ} associated to the cluster of eigenvalues of H around λ_{ℓ} . Then

$$\lim_{\ell \to \infty} \frac{1}{d_{\ell}} tr \left[F \left(P_{\ell} \left(H - \lambda_{\ell} \right) P_{\ell} \right) \right] = \int_{\gamma \in \Gamma} F(\hat{V}(\gamma)) d\nu(\gamma)$$

The above equation has the following spirit:

(quantum mechanics and functional analysis) $\xrightarrow{\ell \to \infty}$ (classical mechanics and symplectic geometry)

Let $d\mu_V$ be the measure on the real line given by $d\mu_V = \hat{V}_*(d\nu)$.

$$\lim_{\ell \to \infty} \int_{\mathbb{R}} F(x) d\mu_{\ell}(x) = \int_{\mathbb{R}} F(x) d\mu_{V}(x) + F(x) d\mu_{V$$

For ℓ sufficiently large, consider the Riesz projector P_ℓ associated to the cluster of eigenvalues of H around $\lambda_\ell.$ Then

$$\lim_{\ell \to \infty} \frac{1}{d_{\ell}} tr \left[F \left(P_{\ell} \left(H - \lambda_{\ell} \right) P_{\ell} \right) \right] = \int_{\gamma \in \Gamma} F(\hat{V}(\gamma)) d\nu(\gamma)$$

The above equation has the following spirit:

(quantum mechanics and functional analysis) $\xrightarrow{\ell \to \infty}$ (classical mechanics and symplectic geometry)

Let $d\mu_V$ be the measure on the real line given by $d\mu_V = \hat{V}_*(d\nu)$.

$$\lim_{\ell \to \infty} \int_{\mathbb{R}} F(x) d\mu_{\ell}(x) = \int_{\mathbb{R}} F(x) d\mu_{V}(x) + F(x) d\mu_{V$$

For ℓ sufficiently large, consider the Riesz projector P_ℓ associated to the cluster of eigenvalues of H around $\lambda_\ell.$ Then

$$\lim_{\ell \to \infty} \frac{1}{d_{\ell}} tr \left[F \left(P_{\ell} \left(H - \lambda_{\ell} \right) P_{\ell} \right) \right] = \int_{\gamma \in \Gamma} F(\hat{V}(\gamma)) d\nu(\gamma)$$

The above equation has the following spirit:

(quantum mechanics and functional analysis) $\xrightarrow{\ell \to \infty}$ (classical mechanics and symplectic geometry)

Let $d\mu_V$ be the measure on the real line given by $d\mu_V = \hat{V}_*(d\nu)$.

$$\lim_{\ell \to \infty} \int_{\mathbb{R}} F(x) d\mu_{\ell}(x) = \int_{\mathbb{R}} F(x) d\mu_{V}(x) + F(x) d\mu_{V$$

For ℓ sufficiently large, consider the Riesz projector P_ℓ associated to the cluster of eigenvalues of H around $\lambda_\ell.$ Then

$$\lim_{\ell \to \infty} \frac{1}{d_{\ell}} tr \left[F \left(P_{\ell} \left(H - \lambda_{\ell} \right) P_{\ell} \right) \right] = \int_{\gamma \in \Gamma} F(\hat{V}(\gamma)) d\nu(\gamma)$$

The above equation has the following spirit:

(quantum mechanics and functional analysis) $\xrightarrow{\ell \to \infty}$ (classical mechanics and symplectic geometry)

Let $d\mu_V$ be the measure on the real line given by $d\mu_V = \hat{V}_*(d\nu)$.

$$\lim_{\ell \to \infty} \int_{\mathbb{R}} F(x) d\mu_{\ell}(x) = \int_{\mathbb{R}} F(x) d\mu_{V}(x) + F(x) d\mu_{V$$

For ℓ sufficiently large, consider the Riesz projector P_ℓ associated to the cluster of eigenvalues of H around $\lambda_\ell.$ Then

$$\lim_{\ell \to \infty} \frac{1}{d_{\ell}} tr \left[F \left(P_{\ell} \left(H - \lambda_{\ell} \right) P_{\ell} \right) \right] = \int_{\gamma \in \Gamma} F(\hat{V}(\gamma)) d\nu(\gamma)$$

The above equation has the following spirit:

(quantum mechanics and functional analysis) $\xrightarrow{\ell \to \infty}$ (classical mechanics and symplectic geometry)

Let $d\mu_V$ be the measure on the real line given by $d\mu_V = \hat{V}_*(d\nu)$.

$$\lim_{\ell \to \infty} \int_{\mathbb{R}} F(x) d\mu_{\ell}(x) = \int_{\mathbb{R}} F(x) d\mu_{V}(x) + F(x) d\mu_{V$$

For ℓ sufficiently large, consider the Riesz projector P_ℓ associated to the cluster of eigenvalues of H around $\lambda_\ell.$ Then

$$\lim_{\ell \to \infty} \frac{1}{d_{\ell}} tr \left[F \left(P_{\ell} \left(H - \lambda_{\ell} \right) P_{\ell} \right) \right] = \int_{\gamma \in \Gamma} F(\hat{V}(\gamma)) d\nu(\gamma)$$

The above equation has the following spirit:

(quantum mechanics and functional analysis) $\xrightarrow{\ell \to \infty}$ (classical mechanics and symplectic geometry)

Let $d\mu_V$ be the measure on the real line given by $d\mu_V = \hat{V}_*(d\nu)$.

$$\lim_{\ell \to \infty} \int_{\mathbb{R}} F(x) d\mu_{\ell}(x) = \int_{\mathbb{R}} F(x) d\mu_{V}(x)$$

Let N be a positive integer number. Regard $\hbar(N) = \frac{1}{\frac{n-1}{2}+N}$. Eigenvalues: $E_{\ell}^{(\hbar(N))} = -\frac{1}{2} \frac{\left(\frac{n-1}{2}+N\right)^2}{\left(\frac{n-1}{2}+\ell\right)^2}$, multiplicity= $d_{\ell} = O(\ell^{n-1})$, $\ell = 0, 1, 2, \dots$

Taking $\ell = N$, we conclude that $E_N^{(\hbar(N))} = -\frac{1}{2}$ is an eigenvalue of $S_{V,\hbar(N)}$ for all N with multiplicity $d_N = O(N^{n-1})$.

The distance between $E_N^{(\hbar(N))} = -\frac{1}{2}$ and next neighbours is $O(N^{-1}).$

ヘロト ヘポト ヘヨト ヘヨト

Let N be a positive integer number. Regard $\hbar(N) = \frac{1}{\frac{n-1}{2}+N}$. Eigenvalues: $E_{\ell}^{(\hbar(N))} = -\frac{1}{2} \frac{\left(\frac{n-1}{2}+N\right)^2}{\left(\frac{n-1}{2}+\ell\right)^2}$, multiplicity= $d_{\ell} = O(\ell^{n-1})$, $\ell = 0, 1, 2, \dots$

Taking $\ell = N$, we conclude that $E_N^{(\hbar(N))} = -\frac{1}{2}$ is an eigenvalue of $S_{V,\hbar(N)}$ for all N with multiplicity $d_N = O(N^{n-1})$.

The distance between $E_N^{(\hbar(N))} = -\frac{1}{2}$ and next neighbours is $O(N^{-1}).$

イロト イポト イヨト イヨト

Let N be a positive integer number. Regard $\hbar(N) = \frac{1}{\frac{n-1}{2}+N}$. Eigenvalues: $E_{\ell}^{(\hbar(N))} = -\frac{1}{2} \frac{\left(\frac{n-1}{2}+N\right)^2}{\left(\frac{n-1}{2}+\ell\right)^2}$, multiplicity= $d_{\ell} = O(\ell^{n-1})$, $\ell = 0, 1, 2, \dots$

Taking $\ell = N$, we conclude that $E_N^{(\hbar(N))} = -\frac{1}{2}$ is an eigenvalue of $S_{V,\hbar(N)}$ for all N with multiplicity $d_N = O(N^{n-1})$.

The distance between $E_N^{(\hbar(N))} = -\frac{1}{2}$ and next neighbours is $O(N^{-1}).$

イロト イポト イヨト イヨト 二日

Let N be a positive integer number. Regard $\hbar(N) = \frac{1}{\frac{n-1}{2}+N}$. Eigenvalues: $E_{\ell}^{(\hbar(N))} = -\frac{1}{2} \frac{\left(\frac{n-1}{2}+N\right)^2}{\left(\frac{n-1}{2}+\ell\right)^2}$, multiplicity= $d_{\ell} = O(\ell^{n-1})$, $\ell = 0, 1, 2, \dots$

Taking $\ell = N$, we conclude that $E_N^{(\hbar(N))} = -\frac{1}{2}$ is an eigenvalue of $S_{V,\hbar(N)}$ for all N with multiplicity $d_N = O(N^{n-1})$.

The distance between $E_N^{(\hbar(N))}=-\frac{1}{2}$ and next neighbours is $O(N^{-1}).$

・吊り ・ヨン ・ヨン 二日

Let $Q: L^2(\mathbb{R}^n) \mapsto L^2(\mathbb{R}^n)$ be a continuous bounded function.

Consider the operators
$$H_{\hbar} = -\frac{\hbar^2}{2}\Delta_{\mathbb{R}^n} - \frac{1}{|\mathbf{x}|} + \epsilon(\hbar)Q$$

with $\epsilon(\hbar) = O(\hbar^{1+\delta})$, $\delta > 0$ and $\hbar(N) = \frac{1}{\frac{n-1}{2}+N}$ as above.

 $H_{\hbar(N)}$ has a cluster of $d_N = O(N^{n-1})$ eigenvalues around -1/2.

Let us denote by $\lambda_{N,j} = -\frac{1}{2} + \mu_{N,j}$, $j = 1, \dots, d_N$, the eigenvalues in that cluster around -1/2.

Let $Q: L^2(\mathbb{R}^n) \mapsto L^2(\mathbb{R}^n)$ be a continuous bounded function.

Consider the operators
$$H_{\hbar} = -\frac{\hbar^2}{2}\Delta_{\mathbb{R}^n} - \frac{1}{|\mathbf{x}|} + \epsilon(\hbar)Q$$

with $\epsilon(\hbar) = O(\hbar^{1+\delta})$, $\delta > 0$ and $\hbar(N) = \frac{1}{\frac{n-1}{2}+N}$ as above.

 $H_{\hbar(N)}$ has a cluster of $d_N = O(N^{n-1})$ eigenvalues around -1/2.

Let us denote by $\lambda_{N,j} = -\frac{1}{2} + \mu_{N,j}$, $j = 1, \dots, d_N$, the eigenvalues in that cluster around -1/2.

イロト イヨト イヨト イヨト ヨー シベル

Let $Q: L^2(\mathbb{R}^n) \mapsto L^2(\mathbb{R}^n)$ be a continuous bounded function.

Consider the operators
$$H_{\hbar} = -\frac{\hbar^2}{2}\Delta_{\mathbb{R}^n} - \frac{1}{|\mathbf{x}|} + \epsilon(\hbar)Q$$

with $\epsilon(\hbar) = O(\hbar^{1+\delta})$, $\delta > 0$ and $\hbar(N) = \frac{1}{\frac{n-1}{2}+N}$ as above.

 $H_{\hbar(N)}$ has a cluster of $d_N = O(N^{n-1})$ eigenvalues around -1/2.

Let us denote by $\lambda_{N,j} = -\frac{1}{2} + \mu_{N,j}$, $j = 1, \dots, d_N$, the eigenvalues in that cluster around -1/2.

イロト イヨト イヨト イヨト ヨー シベル

Let $Q:L^2(\mathbb{R}^n)\mapsto L^2(\mathbb{R}^n)$ be a continuous bounded function.

Consider the operators $H_{\hbar} = -\frac{\hbar^2}{2}\Delta_{\mathbb{R}^n} - \frac{1}{|\mathbf{x}|} + \epsilon(\hbar)Q$ with $\epsilon(\hbar) = O(\hbar^{1+\delta})$, $\delta > 0$ and $\hbar(N) = \frac{1}{\frac{n-1}{2}+N}$ as above.

 $H_{\hbar(N)}$ has a cluster of $d_N = O(N^{n-1})$ eigenvalues around -1/2.

Let us denote by $\lambda_{N,j} = -\frac{1}{2} + \mu_{N,j}$, $j = 1, \dots, d_N$, the eigenvalues in that cluster around -1/2.

Theorem (Uribe, Villegas-Blas, 2008)

Let Q_h be a pseudodifferential operator of order zero with principal symbol a_0 in the class $S_{2n}(1)$ so that $||Q_h||$ is bounded uniformly with respect to \hbar . Then for F continuous on the real line,

$$\lim_{N \to \infty} \frac{1}{d_N} \sum_{j=1}^{d_N} F\left(\frac{\mu_{N,j}}{\epsilon(\hbar)}\right)$$
$$= \int_{\Sigma(-1/2)} F\left(\frac{1}{2\pi} \int_0^{2\pi} a_0(\tilde{\phi}_t(x,p)) dt\right) d\mu_L(x,p)$$

where $\tilde{\phi}_t$ denotes the Hamiltonian flow of the Kepler problem on the surface $\Sigma(-1/2) = \{(\mathbf{x}, \mathbf{p}) \mid \frac{|\mathbf{p}|^2}{2} - \frac{1}{|\mathbf{x}|} = -\frac{1}{2}\}$ and $d\mu_L$ the normalized Liouville measure on $\Sigma(-1/2)$.

 Collision orbits are included. Moser regularization (1970). Geodesic flow ⇔ Kepler problem, energy -1/2. Time reg.
 Fock transform (1929). Laplacian on the n-sphere ⇔

Theorem (Uribe, Villegas-Blas, 2008)

Let Q_h be a pseudodifferential operator of order zero with principal symbol a_0 in the class $S_{2n}(1)$ so that $||Q_h||$ is bounded uniformly with respect to \hbar . Then for F continuous on the real line,

$$\lim_{N \to \infty} \frac{1}{d_N} \sum_{j=1}^{d_N} F\left(\frac{\mu_{N,j}}{\epsilon(\hbar)}\right)$$
$$= \int_{\Sigma(-1/2)} F\left(\frac{1}{2\pi} \int_0^{2\pi} a_0(\tilde{\phi}_t(x,p)) dt\right) d\mu_L(x,p)$$

where ϕ_t denotes the Hamiltonian flow of the Kepler problem on the surface $\Sigma(-1/2) = \{(\mathbf{x}, \mathbf{p}) \mid \frac{|\mathbf{p}|^2}{2} - \frac{1}{|\mathbf{x}|} = -\frac{1}{2}\}$ and $d\mu_L$ the normalized Liouville measure on $\Sigma(-1/2)$.

- Collision orbits are included. Moser regularization (1970). Geodesic flow \Leftrightarrow Kepler problem, energy -1/2. Time reg.
- Fock transform (1929). Laplacian on the n-sphere \Leftrightarrow

Carlos Villegas-Blas On semiclassical limiting eigenvalue distribution theor

Hydrogen atom (n = 3) in a constant magnetic field $\epsilon(\hbar)\vec{B}$, $\vec{B} = (0, 0, B)$. Zeeman effect. Coulomb potential $V(\mathbf{x}) = -\frac{1}{|\mathbf{x}|}$.

The Zeeman hydrogen Hamiltonian is

 $H_V(\hbar, B) : \mathcal{D}om(H_V(\hbar, B)) \subset L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3),$

$$H_V(\hbar, B) = \frac{1}{2} \left(-i\hbar \nabla - \epsilon(\hbar) \overrightarrow{A} \right)^2 - \frac{1}{|x|}$$

= $S_{V,\hbar} + w(\hbar, B).$

where $\overrightarrow{A} = (B/2)(-x_2, x_1, 0)$, $\overrightarrow{B} = \nabla \times \overrightarrow{A}$, $S_{V,\hbar} = -\frac{\hbar^2}{2} \Delta_{\mathbb{R}^n} - \frac{1}{|\mathbf{x}|}$ and the **Zeeman perturbation** $w(\hbar, B)$ is given by

$$w(h,B) = \frac{(\epsilon(\hbar)B)^2}{8}(x_1^2 + x_2^2) - \frac{\epsilon(\hbar)B}{2}\hbar L_3$$

with
$$L_3 = -i \left(x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1} \right)$$

Hydrogen atom (n = 3) in a constant magnetic field $\epsilon(\hbar)\vec{B}$, $\vec{B} = (0, 0, B)$. Zeeman effect. Coulomb potential $V(\mathbf{x}) = -\frac{1}{|\mathbf{x}|}$.

The Zeeman hydrogen Hamiltonian is

 $H_V(\hbar, B) : \mathcal{D}om(H_V(\hbar, B)) \subset L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3),$

$$H_V(\hbar, B) = \frac{1}{2} \left(-i\hbar \nabla - \epsilon(\hbar) \overrightarrow{A} \right)^2 - \frac{1}{|x|}$$

= $S_{V,\hbar} + w(\hbar, B).$

where $\overrightarrow{A} = (B/2)(-x_2, x_1, 0)$, $\overrightarrow{B} = \nabla \times \overrightarrow{A}$, $S_{V,\hbar} = -\frac{\hbar^2}{2} \Delta_{\mathbb{R}^n} - \frac{1}{|\mathbf{x}|}$ and the Zeeman perturbation $w(\hbar, B)$ is given by

$$w(h,B) = \frac{(\epsilon(\hbar)B)^2}{8}(x_1^2 + x_2^2) - \frac{\epsilon(\hbar)B}{2}\hbar L_3,$$

with $L_3 = -i \left(x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1} \right).$

Based on a stability theorem due to Avron, Herbst, Simon, we can show that under the perturbation $\epsilon(h)\vec{B}$, the eigenvalue E = -1/2 gives rise to a cluster of nearby eigenvalues $E_{N,j}$, $j = 1, \ldots, d_N$.

Theorem (Avendaño, Hislop, Villegas-Blas)

Let B > 0 be fixed, and let F be a continuous function on \mathbb{R} . Let $\epsilon(h) = h^{33/2+\delta}$, for some $\delta > 0$, and take h = 1/(N+1), with $N \in \mathbb{N}$. For the eigenvalue cluster $\{E_{N,j}\}$ near -1/2, we have

$$\lim_{N \to \infty} \frac{1}{d_N} \sum_{j=1}^{d_N} F\left(\frac{E_{N,j} - (-1/2)}{\epsilon(1/(N+1))}\right) = \int_{\Sigma(-1/2)} F\left(-\frac{B}{2}L_3(x,p)\right) d\mu_L(x,p) = \int_{-1}^1 F\left(\frac{-B}{2}u\right) (1-|u|) du$$

where $L_3(x,p) = x_1p_2 - x_2p_1$ is the third component of the classical angular momentum on the energy surface $\Sigma(-1/2)$ with collision orbits included. μ_L is the normalized Liouville measure on $\Sigma(-1/2)$. du is the Lebesgue measure on [-1,1].

Based on a stability theorem due to Avron, Herbst, Simon, we can show that under the perturbation $\epsilon(h)\vec{B}$, the eigenvalue E = -1/2 gives rise to a cluster of nearby eigenvalues $E_{N,j}$, $j = 1, \ldots, d_N$.

Theorem (Avendaño, Hislop, Villegas-Blas)

Let B > 0 be fixed, and let F be a continuous function on \mathbb{R} . Let $\epsilon(h) = h^{33/2+\delta}$, for some $\delta > 0$, and take h = 1/(N+1), with $N \in \mathbb{N}$. For the eigenvalue cluster $\{E_{N,j}\}$ near -1/2, we have

$$\lim_{N \to \infty} \frac{1}{d_N} \sum_{j=1}^{d_N} F\left(\frac{E_{N,j} - (-1/2)}{\epsilon(1/(N+1))}\right) = \int_{\Sigma(-1/2)} F\left(-\frac{B}{2}L_3(x,p)\right) d\mu_L(x,p) = \int_{-1}^1 F\left(\frac{-B}{2}u\right) (1-|u|) du$$

where $L_3(x,p) = x_1p_2 - x_2p_1$ is the third component of the classical angular momentum on the energy surface $\Sigma(-1/2)$ with collision orbits included. μ_L is the normalized Liouville measure on $\Sigma(-1/2)$. du is the Lebesgue measure on [-1,1].

For $\epsilon(\hbar)=\hbar^q$, q>19, and N sufficiently large, we have that, inside the corresponding cluster around -1/2, the spectrum of the operator $H_{\hbar(N)}$ is contained in the disjoint union of the intervals

$$\begin{split} & [-\frac{1}{2} - \frac{B}{2} \frac{m}{N+1} \epsilon(\hbar) - \epsilon(\hbar) O(N^{-\sigma}), -\frac{1}{2} - \frac{B}{2} \frac{m}{N+1} \epsilon(\hbar) - \epsilon(\hbar) O(N^{-\sigma})] \\ & \text{with } \sigma > 1 \text{ and } m = -N, \dots, N. \end{split}$$

Moreover, the multiplicity in each one of those intervals is N + 1 - |m| respectively, i. e. we have sub-clusters denoted by $C_{N,m}$. Let us denote the eigenvalues of $H_{\hbar(N)}$ inside the sub-cluster $C_{N,m}$ by $E_{N,m,k}$ with $k = 1, \ldots, N + 1 - |m|$.

For $\epsilon(\hbar)=\hbar^q$, q>19, and N sufficiently large, we have that, inside the corresponding cluster around -1/2, the spectrum of the operator $H_{\hbar(N)}$ is contained in the disjoint union of the intervals

$$\left[-\frac{1}{2} - \frac{B}{2}\frac{m}{N+1}\epsilon(\hbar) - \epsilon(\hbar)O(N^{-\sigma}), -\frac{1}{2} - \frac{B}{2}\frac{m}{N+1}\epsilon(\hbar) - \epsilon(\hbar)O(N^{-\sigma})\right]$$
with $\sigma > 1$ and $m = N$.

with $\sigma > 1$ and $m = -N, \ldots, N$.

Moreover, the multiplicity in each one of those intervals is N + 1 - |m| respectively, i. e. we have sub-clusters denoted by $C_{N,m}$. Let us denote the eigenvalues of $H_{\hbar(N)}$ inside the sub-cluster $C_{N,m}$ by $E_{N,m,k}$ with $k = 1, \ldots, N + 1 - |m|$.

Let $\mu = \frac{m}{N+1}$ fixed. We have the following

Theorem (Avendaño, Hislop, Villegas-Blas)

Let B > 0 be fixed, and let F be a continuous function on \mathbb{R} . Let $\epsilon(h) = h^{19+\delta}$, for some $\delta > 0$, and take h = 1/(N+1), with $N \in \mathbb{N}$. For the eigenvalue sub-cluster $\{E_{N,\mu(N+1),k}\}$ around $-\frac{1}{2} - \frac{B}{2}\mu\epsilon(\hbar)$, we have

$$\lim_{N \to \infty} \frac{1}{N+1-|m|} \sum_{k=1}^{N+1-|m|} F\left(\frac{E_{N,\mu N+1,k} - \left(-\frac{1}{2} - \frac{B}{2}\mu\epsilon(\hbar)\right)}{\epsilon^2(1/(N+1))}\right) = \int_{\Sigma(-1/2,\mu)} F\left(\frac{B^2}{8}\frac{1}{2\pi}\int_0^{2\pi} a_0(\tilde{\phi}_t(x,p))\right) d\mu_{L,\mu}(x,p)$$

where $\Sigma(-1/2, \mu)$ denotes the set of points $(x, p) \in \mathbb{R}^6$ with energy E = -1/2 and $L_3(x, p) = \mu$. The function $a_0 : \mathbb{R}^6 \mapsto \mathbb{R}$ is given by $a_0(x, p) = x_1^2 + x_2^2$. The measure $\mu_{L,\mu}$ is the restriction of the Liouville measure μ_L to the set $\Sigma(-1/2, \mu)$. Dilation operator. For r > 0, $D_r : L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$, $D_r \Psi(\mathbf{x}) = r^{3/2} \Psi(r\mathbf{x})$. Consider the following re-scaling:

$$D_{\hbar^2} H_V(\hbar, B) D_{\hbar^{-2}} = \frac{1}{h^2} S_V(\lambda(h, B))$$

where the scaled Zeeman hydrogen hamiltonian $S_V(\lambda(h, B))$ is defined via the effective magnetic field $\lambda(h, B) = h^3 \epsilon(h)B$ and the operator $S_V(\lambda)$ given by:

$$S_V(\lambda) = -\frac{1}{2}\Delta - \frac{1}{|x|} + \frac{\lambda^2}{8}(x_1^2 + x_2^2) - \frac{\lambda}{2}L_3$$

= $S_V + W(\lambda).$

where we write $S_V \equiv -\frac{1}{2}\Delta - \frac{1}{|x|}$ for the scaled hydrogen atom Hamiltonian and

$$W(\lambda) = \frac{\lambda^2}{8}(x_1^2 + x_2^2) - \frac{\lambda}{2}L_3.$$

Note that the eigenvalue $-\frac{1}{2}$ of $S_{V,\hbar(N)}$ corresponds to the eigenvalue $-\frac{1}{2(N+1)^2}$ of S_V with $\hbar = \frac{1}{N+1}$.

Dilation operator. For r > 0, $D_r : L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$, $D_r \Psi(\mathbf{x}) = r^{3/2} \Psi(r\mathbf{x})$. Consider the following re-scaling:

$$D_{\hbar^2} H_V(\hbar, B) D_{\hbar^{-2}} = \frac{1}{h^2} S_V(\lambda(h, B))$$

where the scaled Zeeman hydrogen hamiltonian $S_V(\lambda(h, B))$ is defined via the effective magnetic field $\lambda(h, B) = h^3 \epsilon(h)B$ and the operator $S_V(\lambda)$ given by:

$$S_V(\lambda) = -\frac{1}{2}\Delta - \frac{1}{|x|} + \frac{\lambda^2}{8}(x_1^2 + x_2^2) - \frac{\lambda}{2}L_3$$

= $S_V + W(\lambda).$

where we write $S_V \equiv -\frac{1}{2}\Delta - \frac{1}{|x|}$ for the scaled hydrogen atom Hamiltonian and

$$W(\lambda) = \frac{\lambda^2}{8}(x_1^2 + x_2^2) - \frac{\lambda}{2}L_3.$$

Note that the eigenvalue $-\frac{1}{2}$ of $S_{V,\hbar(N)}$ corresponds to the eigenvalue $-\frac{1}{2(N+1)^2}$ of S_V with $\hbar = \frac{1}{N+1}$.

Dilation operator. For r > 0, $D_r : L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$, $D_r \Psi(\mathbf{x}) = r^{3/2} \Psi(r\mathbf{x})$. Consider the following re-scaling:

$$D_{\hbar^2} H_V(\hbar, B) D_{\hbar^{-2}} = \frac{1}{h^2} S_V(\lambda(h, B))$$

where the scaled Zeeman hydrogen hamiltonian $S_V(\lambda(h, B))$ is defined via the effective magnetic field $\lambda(h, B) = h^3 \epsilon(h) B$ and the operator $S_V(\lambda)$ given by:

$$S_V(\lambda) = -\frac{1}{2}\Delta - \frac{1}{|x|} + \frac{\lambda^2}{8}(x_1^2 + x_2^2) - \frac{\lambda}{2}L_3$$

= $S_V + W(\lambda).$

where we write $S_V \equiv -\frac{1}{2}\Delta - \frac{1}{|x|}$ for the scaled hydrogen atom Hamiltonian and

$$W(\lambda) = \frac{\lambda^2}{8}(x_1^2 + x_2^2) - \frac{\lambda}{2}L_3.$$

Note that the eigenvalue $-\frac{1}{2}$ of $S_{V,\hbar(N)}$ corresponds to the eigenvalue $-\frac{1}{2(N+1)^2}$ of S_V with $\hbar = \frac{1}{N+1}$.

Four operators:

$$S_0 = -\frac{1}{2}\Delta$$

$$S_V = -\frac{1}{2}\Delta - \frac{1}{|x|}$$

$$S_0(\lambda) = -\frac{1}{2}\Delta + \frac{\lambda^2}{8}(x_1^2 + x_2^2) - \frac{\lambda}{2}L_3$$

$$S_V(\lambda) = -\frac{1}{2}\Delta - \frac{1}{|x|} + \frac{\lambda^2}{8}(x_1^2 + x_2^2) - \frac{\lambda}{2}L_3$$

Spectrum:

$$\sigma(S_0) = [0, \infty)$$

$$\sigma(S_V) = \left\{ E_N = \frac{-1}{2(N+1)^2} \mid N = 0, 1, \ldots \right\} \quad \bigcup \quad [0, \infty)$$

$$\sigma(S_0(\lambda)) = [\lambda/2, \infty),$$

$$|E_N - E_{N\pm 1}| = O(N^{-3})$$

くヨン

Four operators:

$$S_0 = -\frac{1}{2}\Delta$$

$$S_V = -\frac{1}{2}\Delta - \frac{1}{|x|}$$

$$S_0(\lambda) = -\frac{1}{2}\Delta + \frac{\lambda^2}{8}(x_1^2 + x_2^2) - \frac{\lambda}{2}L_3$$

$$S_V(\lambda) = -\frac{1}{2}\Delta - \frac{1}{|x|} + \frac{\lambda^2}{8}(x_1^2 + x_2^2) - \frac{\lambda}{2}L_3$$

Spectrum:

$$\sigma(S_0) = [0, \infty)$$

$$\sigma(S_V) = \left\{ E_N = \frac{-1}{2(N+1)^2} \mid N = 0, 1, \ldots \right\} \quad \bigcup \quad [0, \infty)$$

$$\sigma(S_0(\lambda)) = [\lambda/2, \infty),$$

$$|E_N - E_{N\pm 1}| = O(N^{-3})$$

For N given and large, let us consider a circle Γ_N with center $E_N = \frac{-1}{2(N+1)^2}$ and radius $r_N = O(N^{-3})$. Consider $\lambda = \lambda(\hbar, B) = \hbar^3 \epsilon(\hbar) B$ with $\hbar = 1/(N+1)$. $P_N - \Pi_N = \frac{-1}{2\pi i} \int_{\Gamma_N} (S_V(\lambda) - \mathbf{z})^{-1} d\mathbf{z} - \frac{-1}{2\pi i} \int_{\Gamma_N} (S_V - \mathbf{z})^{-1} d\mathbf{z}$ $= -\frac{1}{2\pi i} \int_{\Gamma_N} \left[(S_V(\lambda) - \mathbf{z})^{-1} - (S_V - \mathbf{z})^{-1} \right] d\mathbf{z}$

Avron, Herbst, Simon show we do not have

$$\left\| \left(S_V(\lambda) - \mathbf{z} \right)^{-1} - \left(S_V - \mathbf{z} \right)^{-1} \right\| \longrightarrow 0, \qquad \lambda \to 0$$

However

$$P_N - \Pi_N = -\frac{1}{2\pi i} \int_{\Gamma_N} \left[(S_V(\lambda) - \mathbf{z})^{-1} - (S_0(\lambda) - \mathbf{z})^{-1} \right] \\ - \left[(S_V - \mathbf{z})^{-1} - (S_0 - \mathbf{z})^{-1} \right] d\mathbf{z}$$

For N given and large, let us consider a circle
$$\Gamma_N$$
 with center
 $E_N = \frac{-1}{2(N+1)^2}$ and radius $r_N = O(N^{-3})$.
Consider $\lambda = \lambda(\hbar, B) = \hbar^3 \epsilon(\hbar) B$ with $\hbar = 1/(N+1)$.
 $P_N - \Pi_N = \frac{-1}{2\pi i} \int_{\Gamma_N} (S_V(\lambda) - \mathbf{z})^{-1} d\mathbf{z} - \frac{-1}{2\pi i} \int_{\Gamma_N} (S_V - \mathbf{z})^{-1} d\mathbf{z}$
 $= -\frac{1}{2\pi i} \int_{\Gamma_N} \left[(S_V(\lambda) - \mathbf{z})^{-1} - (S_V - \mathbf{z})^{-1} \right] d\mathbf{z}$

Avron, Herbst, Simon show we do not have

$$\left\| \left(S_V(\lambda) - \mathbf{z} \right)^{-1} - \left(S_V - \mathbf{z} \right)^{-1} \right\| \longrightarrow 0, \qquad \lambda \to 0$$

However

$$P_N - \Pi_N = -\frac{1}{2\pi i} \int_{\Gamma_N} \left[(S_V(\lambda) - \mathbf{z})^{-1} - (S_0(\lambda) - \mathbf{z})^{-1} \right] \\ - \left[(S_V - \mathbf{z})^{-1} - (S_0 - \mathbf{z})^{-1} \right] d\mathbf{z}$$

For N given and large, let us consider a circle
$$\Gamma_N$$
 with center
 $E_N = \frac{-1}{2(N+1)^2}$ and radius $r_N = O(N^{-3})$.
Consider $\lambda = \lambda(\hbar, B) = \hbar^3 \epsilon(\hbar) B$ with $\hbar = 1/(N+1)$.
 $P_N - \Pi_N = \frac{-1}{2\pi i} \int_{\Gamma_N} (S_V(\lambda) - \mathbf{z})^{-1} d\mathbf{z} - \frac{-1}{2\pi i} \int_{\Gamma_N} (S_V - \mathbf{z})^{-1} d\mathbf{z}$
 $= -\frac{1}{2\pi i} \int_{\Gamma_N} \left[(S_V(\lambda) - \mathbf{z})^{-1} - (S_V - \mathbf{z})^{-1} \right] d\mathbf{z}$

Avron, Herbst, Simon show we do not have

$$\left\| \left(S_V(\lambda) - \mathbf{z} \right)^{-1} - \left(S_V - \mathbf{z} \right)^{-1} \right\| \longrightarrow 0, \qquad \lambda \to 0$$

However

$$P_N - \Pi_N = -\frac{1}{2\pi i} \int_{\Gamma_N} \left[(S_V(\lambda) - \mathbf{z})^{-1} - (S_0(\lambda) - \mathbf{z})^{-1} \right] \\ - \left[(S_V - \mathbf{z})^{-1} - (S_0 - \mathbf{z})^{-1} \right] d\mathbf{z}$$

$$\left[(S_V(\lambda) - \mathbf{z})^{-1} - (S_0(\lambda) - \mathbf{z})^{-1} \right] - \left[(S_V - \mathbf{z})^{-1} - (S_0 - \mathbf{z})^{-1} \right]$$

= $(S_0(\lambda) - \mathbf{z})^{-1} \left[V (S_V(\lambda) - \mathbf{z})^{-1} - V (S_V - \mathbf{z})^{-1} \right]$
+ $\left[(S_0(\lambda) - \mathbf{z})^{-1} V - (S_0 - \mathbf{z})^{-1} V \right] (S_V - \mathbf{z})^{-1}$

Lemma (Key Lemma)

Consider $\mathbf{z} \notin [0, \infty)$. (i) We have the following norm convergence :

$$V(S_0(\lambda) - \mathbf{z})^{-1} \to V(S_0 - \mathbf{z})^{-1}, \quad \lambda \to 0.$$

(ii) Consider $\lambda = \lambda(\hbar)$ with $\hbar = 1/(N+1)$ and $\epsilon(\hbar) = \hbar^q$, q > 3/2. For $|\mathbf{z} - E_N| = O(N^{-3})$ we have

 $V(S_0(\lambda(\hbar)) - \mathbf{z})^{-1} - V(S_0 - \mathbf{z})^{-1} = O\left(N^{-\left(\frac{2}{5}q - \frac{3}{5}\right)}\right), \qquad N \to \infty$

$$\begin{bmatrix} (S_V(\lambda) - \mathbf{z})^{-1} - (S_0(\lambda) - \mathbf{z})^{-1} \end{bmatrix} - \begin{bmatrix} (S_V - \mathbf{z})^{-1} - (S_0 - \mathbf{z})^{-1} \end{bmatrix}$$
$$= (S_0(\lambda) - \mathbf{z})^{-1} \begin{bmatrix} V (S_V(\lambda) - \mathbf{z})^{-1} - V (S_V - \mathbf{z})^{-1} \end{bmatrix}$$
$$+ \begin{bmatrix} (S_0(\lambda) - \mathbf{z})^{-1} V - (S_0 - \mathbf{z})^{-1} V \end{bmatrix} (S_V - \mathbf{z})^{-1}$$

Lemma (Key Lemma)

Consider $\mathbf{z} \notin [0, \infty)$. (i) We have the following norm convergence :

$$V(S_0(\lambda) - \mathbf{z})^{-1} \to V(S_0 - \mathbf{z})^{-1}, \quad \lambda \to 0.$$

(ii) Consider $\lambda = \lambda(\hbar)$ with $\hbar = 1/(N+1)$ and $\epsilon(\hbar) = \hbar^q$, q > 3/2. For $|\mathbf{z} - E_N| = O(N^{-3})$ we have

$$V(S_0(\lambda(\hbar)) - \mathbf{z})^{-1} - V(S_0 - \mathbf{z})^{-1} = O\left(N^{-\left(\frac{2}{5}q - \frac{3}{5}\right)}\right), \qquad N \to \infty$$

Theorem (Stability theorem)

Given B > 0 and q > 9, the following spectral projectors are well defined for N sufficiently large and $\hbar = 1/(N + 1)$:

$$P_N = -\frac{1}{2\pi i} \int_{\Gamma_N} \left(S_V(\lambda(\hbar, B)) - \mathbf{z} \right)^{-1} d\mathbf{z}$$

$$\Pi_N = -\frac{1}{2\pi i} \int_{\Gamma_N} \left(S_V - \mathbf{z} \right)^{-1} d\mathbf{z}.$$

Moreover

$$||P_N - \Pi_N|| = O(N^{-\frac{2q-33}{5}})$$

so that, for q > 33/2, the spectrum of $S_V(\lambda(h = 1/(N + 1), B))$ inside the circle Γ_N consist of a cluster of d_N eigenvalues taking Nsufficiently large.

- 4 同 M - 4 三 M - 4 三 M

On the size of the eigenvalue cluster around $E_N = \frac{-1}{2(N+1)^2}$.

Let us denote by $\tilde{E}_{N,j}$, $j = 1, \ldots, d_N$, the eigenvalues of $S_V(\lambda)$ inside the circle Γ_N (this notion is well defined for N large). Now we consider the eigenvalue shifts $\tilde{\nu}_{N,j} = \tilde{E}_{N,j} - E_N$ thinking of them as the eigenvalues of the operator $P_N(S_V(\lambda) - E_N)P_N$. Taking q > 33/2, we have for $\sigma = \frac{2q-33}{5} > 0$,

$$P_N(S_V(\lambda) - E_N)P_N = \Pi_N W(\lambda)\Pi_N + (P_N - \Pi_N) W(\lambda)\Pi_N + P_N W(\lambda)\Pi_N \left\{ [I - (P_N - \Pi_N)]^{-1} - I \right\} = \Pi_N W(\lambda)\Pi_N + O(N^{-\sigma})W(\lambda)\Pi_N + P_N W(\lambda)\Pi_N O(N^{-\sigma})$$

We have $||L_3\Pi_N|| = ||\Pi_N L_3\Pi_N|| = O(N)$ and using coherent states we can also show $||(x_1^2 + x_2^2)\Pi_N|| = O(N^4)$ which implies $||W(\lambda)\Pi_N|| = O(h^2\epsilon(h))$. Thus we conclude

$$\frac{P_N(S_V(\lambda) - E_N)P_N}{h^2\epsilon(h)} = \Pi_N\left(-\frac{B}{2}hL_3\right)\Pi_N + O(N^{-\sigma}) = O(1)$$

On the size of the eigenvalue cluster around $E_N = \frac{-1}{2(N+1)^2}$. Let us denote by $\tilde{E}_{N,j}$, $j = 1, \ldots, d_N$, the eigenvalues of $S_V(\lambda)$ inside the circle Γ_N (this notion is well defined for N large). Now we consider the eigenvalue shifts $\tilde{\nu}_{N,j} = \tilde{E}_{N,j} - E_N$ thinking of them as the eigenvalues of the operator $P_N(S_V(\lambda) - E_N)P_N$. Taking q > 33/2, we have for $\sigma = \frac{2q-33}{2} > 0$.

$$P_N(S_V(\lambda) - E_N)P_N = \Pi_N W(\lambda)\Pi_N + (P_N - \Pi_N) W(\lambda)\Pi_N + P_N W(\lambda)\Pi_N \left\{ [I - (P_N - \Pi_N)]^{-1} - I \right\} = \Pi_N W(\lambda)\Pi_N + O(N^{-\sigma})W(\lambda)\Pi_N + P_N W(\lambda)\Pi_N O(N^{-\sigma})$$

We have $||L_3\Pi_N|| = ||\Pi_N L_3\Pi_N|| = O(N)$ and using coherent states we can also show $||(x_1^2 + x_2^2)\Pi_N|| = O(N^4)$ which implies $||W(\lambda)\Pi_N|| = O(h^2\epsilon(h))$. Thus we conclude

$$\frac{P_N(S_V(\lambda) - E_N)P_N}{h^2\epsilon(h)} = \Pi_N\left(-\frac{B}{2}hL_3\right)\Pi_N + O(N^{-\sigma}) = O(1)$$

On the size of the eigenvalue cluster around $E_N = \frac{-1}{2(N+1)^2}$. Let us denote by $\tilde{E}_{N,j}$, $j = 1, \ldots, d_N$, the eigenvalues of $S_V(\lambda)$ inside the circle Γ_N (this notion is well defined for N large). Now we consider the eigenvalue shifts $\tilde{\nu}_{N,j} = \tilde{E}_{N,j} - E_N$ thinking of them as the eigenvalues of the operator $P_N(S_V(\lambda) - E_N)P_N$. Taking q > 33/2, we have for $\sigma = \frac{2q-33}{5} > 0$,

$$P_N(S_V(\lambda) - E_N)P_N = \Pi_N W(\lambda)\Pi_N + (P_N - \Pi_N) W(\lambda)\Pi_N + P_N W(\lambda)\Pi_N \left\{ [I - (P_N - \Pi_N)]^{-1} - I \right\} = \Pi_N W(\lambda)\Pi_N + O(N^{-\sigma})W(\lambda)\Pi_N + P_N W(\lambda)\Pi_N O(N^{-\sigma})$$

We have $||L_3\Pi_N|| = ||\Pi_N L_3\Pi_N|| = O(N)$ and using coherent states we can also show $||(x_1^2 + x_2^2)\Pi_N|| = O(N^4)$ which implies $||W(\lambda)\Pi_N|| = O(h^2\epsilon(h))$. Thus we conclude

$$\frac{P_N(S_V(\lambda) - E_N)P_N}{h^2\epsilon(h)} = \Pi_N\left(-\frac{B}{2}hL_3\right)\Pi_N + O(N^{-\sigma}) = O(1)$$

· 曰 › · (周 › · (日 › · (日 › · 日

On the size of the eigenvalue cluster around $E_N = \frac{-1}{2(N+1)^2}$. Let us denote by $\tilde{E}_{N,j}$, $j = 1, \ldots, d_N$, the eigenvalues of $S_V(\lambda)$ inside the circle Γ_N (this notion is well defined for N large). Now we consider the eigenvalue shifts $\tilde{\nu}_{N,j} = \tilde{E}_{N,j} - E_N$ thinking of them as the eigenvalues of the operator $P_N(S_V(\lambda) - E_N)P_N$. Taking q > 33/2, we have for $\sigma = \frac{2q-33}{5} > 0$,

$$P_N(S_V(\lambda) - E_N)P_N = \Pi_N W(\lambda)\Pi_N + (P_N - \Pi_N) W(\lambda)\Pi_N + P_N W(\lambda)\Pi_N \left\{ [I - (P_N - \Pi_N)]^{-1} - I \right\} = \Pi_N W(\lambda)\Pi_N + O(N^{-\sigma})W(\lambda)\Pi_N + P_N W(\lambda)\Pi_N O(N^{-\sigma})$$

We have $\|L_3\Pi_N\| = \|\Pi_N L_3\Pi_N\| = O(N)$ and using coherent states we can also show $\|(x_1^2 + x_2^2)\Pi_N\| = O(N^4)$ which implies $\|W(\lambda)\Pi_N\| = O(h^2\epsilon(h))$. Thus we conclude

$$\frac{P_N(S_V(\lambda) - E_N)P_N}{h^2\epsilon(h)} = \Pi_N\left(-\frac{B}{2}hL_3\right)\Pi_N + O(N^{-\sigma}) = O(1)$$

《曰》 《國》 《臣》 《臣》 三臣 -

Theorem

Let F be a continuous function on \mathbb{R} . Then for $\hbar = 1/(N+1)$ and q > 33/2,

$$\frac{1}{d_N} \sum_{j=1}^{d_N} F\left(\frac{E_{N,j} - (-1/2)}{\epsilon(1/(N+1))}\right) = \frac{1}{d_N} \operatorname{Tr} F\left(\Pi_N\left(-\frac{B}{2}\hbar L_3\right)\Pi_N\right) + O(N^{-\sigma}).$$

Remark: It is enough to show the theorem when F is actually a monomial. Note that L_3 commutes with Π_N .

(ロ) (部) (E) (E) (E)

The Fock transform. Inverse of the stereographic projection $S: \mathbb{R}^n \mapsto S_o^n$,

$$\begin{split} \omega_i &= \frac{2p_i}{|\mathbf{p}|^2 + 1}, \quad i = 1, \dots, n \qquad \omega_{n+1} = \frac{|\mathbf{p}|^2 - 1}{|\mathbf{p}|^2 + 1}.\\ K : L^2(S^n) &\mapsto L^2(\mathbb{R}^n) \\ \forall f \in L^2(S^n) \qquad K(f)(\mathbf{p}) = \left(\frac{2}{|\mathbf{p}|^2 + 1}\right)^{n/2} f(S(\mathbf{p})).\\ J : L^2(\mathbb{R}^n) &\mapsto L^2(\mathbb{R}^n) \\ \qquad J(\hat{\Psi})(\mathbf{p}) &= \frac{2}{|\mathbf{p}|^2 + 1} \hat{\Psi}(\mathbf{p}).\\ \end{split}$$
Denote by \mathcal{E}_N the eigenspace of $A = -\frac{1}{2}\Delta_{\mathbb{R}^n} - \frac{1}{|\mathbf{x}|}$ with eigenval $E_N = -\frac{1}{2(N + \frac{n-1}{2})^2}.$ Then the operator

$$\begin{array}{rcl} \mathcal{F}(\mathcal{E}_N) & \to & L^2(S^n) \\ \hat{\Psi} & \mapsto & K^{-1}J^{-1/2}D_{r_N^{-1}}(\hat{\Psi}), \end{array}$$

where $r_N = N + (n-1)/2$, is a unitary isomorphism onto V_N .

ue

THE NULL QUADRIC.

Given n a positive integer number, we define the null quadric by

$$Q^n = \{ \boldsymbol{\alpha} \in \mathbb{C}^{n+1} | \alpha_1^2 + \ldots + \alpha_{n+1}^2 = 0 \}$$

$$\boldsymbol{\alpha} \in Q^n$$
 iff $|\Re \boldsymbol{\alpha}| = |\Im \boldsymbol{\alpha}|$ and $\Re \boldsymbol{\alpha} \cdot \Im \boldsymbol{\alpha} = 0$

$$\sigma: Q^n - \{0\} \longmapsto T^* S^n - \{0\},$$
$$\sigma(\alpha) = \left(\frac{\Re \alpha}{|\Re \alpha|}, -\Im \alpha\right)$$

$$\mathcal{A} = \{ \boldsymbol{\alpha} \in Q^n \mid |\Re \boldsymbol{\alpha}| = |\Im \boldsymbol{\alpha}| = 1 \}$$

個人 くほん くほん

Coherent states on the n-sphere

$$\Phi_{\boldsymbol{\alpha},\ell}(\mathbf{w}) \equiv a(\ell) \left(\boldsymbol{\alpha} \cdot \mathbf{w} \right)^{\ell}, \ \mathbf{w} \in S^n, \ \boldsymbol{\alpha} \in \mathcal{A}.$$

with $a(\ell)$ a normalization constant. Properties:

•
$$\Delta_{S^n} \Phi_{\alpha,\ell} = \lambda_\ell \Phi_{\alpha,\ell}$$
, $\Phi_{\alpha,\ell} \in V_\ell$.

• Resolution of the identity: For all $f \in V_{\ell}$,

$$f = d_{\ell} \int_{\boldsymbol{\alpha} \in \mathcal{A}} < \Phi_{\boldsymbol{\alpha},\ell}, f > \Phi_{\boldsymbol{\alpha},\ell} d\mu(\boldsymbol{\alpha}),$$
$$\Pi_{\ell} = d_{\ell} \int_{\boldsymbol{\alpha} \in \mathcal{A}} |\Phi_{\boldsymbol{\alpha},\ell} \rangle < \Phi_{\boldsymbol{\alpha},\ell} |d\mu(\boldsymbol{\alpha}).$$

 $\bullet~ {\rm For}~ T: L^2(S^n)\mapsto L^2(S^n)$ a bounded operator,

$$tr\left(\Pi_{\ell}T\Pi_{\ell}\right) = d_{\ell}\int_{\boldsymbol{\alpha}\in\mathcal{A}} <\Phi_{\boldsymbol{\alpha},\ell}|T|\Phi_{\boldsymbol{\alpha},\ell} > d\mu(\boldsymbol{\alpha})$$

• Concentration for ℓ large on the great circle generated by $\Re \alpha$ and $\Im \alpha$. Coherent states for the hydrogen atom: $\Psi_{\alpha,\ell} = \mathcal{F}^{-1}\hat{\Phi}_{\alpha,\ell}$ with $\hat{\Phi}_{\alpha,\ell} = U^{-1}\Phi_{\alpha,\ell}$ Key Lemma:

Lemma

There exist $r_0 > 0$ independent of α and N such that for all non-negative integer numbers p and s

$$\lim_{N \to \infty} N^s \int_{|\mathbf{x}| \ge r_0} |\mathbf{x}|^p |D_{(N+1)^2} \Psi_{\boldsymbol{\alpha},\ell}|^2 d\mathbf{x} = 0$$

(日本) (日本) (日本)

Lemma

Let Π_N be the projector to the eigenspace associated to the eigenvalue E_N of the scaled hydrogen atom hamiltonian S_V as above. Then for $N \to \infty$ and $k \in \mathbb{N}$ fixed we have

$$\Pi_N L_3 \Pi_N = O(N), \Pi_N (x_1^2 + x_2^2)^k \Pi_N = O(N^{4k}).$$

Lemma

For $\alpha \in A$, m a non-negative integer number and h = 1/(N+1), we have for $N \to \infty$

$$\langle \Psi_{\alpha,N}, (hBL_3)^m \Psi_{\alpha,N} \rangle = (BL_3(\alpha))^m + O(N^{-1})$$

where $L_3(\alpha) = \Re(\alpha)_1 \Im(\alpha)_2 - \Re(\alpha)_2 \Im(\alpha)_1$ is the angular momentum in the third direction associated to the point $(x,p) = \mathcal{M}^{-1}(\alpha)$ where \mathcal{M} is the inverse of the Moser map $\mathcal{M}: T^*(\mathbb{R}^n) \to T^*(\mathbb{S}^3)$ and α is regarded as an element of $T_1^*(\mathbb{S}^3)$.

Theorem

Let $F : \mathbb{R} \to \mathbb{R}$ be continuous. Then, we have

$$\lim_{N \to \infty} \frac{1}{d_N} Tr\left(F\left(\Pi_N\left(-\frac{B}{2}hL_3\right)\Pi_N\right)\right)$$
$$= \int_{\Sigma(-1/2)} F\left(-\frac{B}{2}L_3(x,p)\right) \ d\mu_L(x,p)$$

where $L_3(x,p) = x_1p_2 - x_2p_1$ is the classical angular momentum.

Existence of suclusters fixing an eigenvalue of the angular momentum operator L_z . Work by M. Karasev (reduction of coherent states). Averaging Method.

Theorem

Let $F : \mathbb{R} \to \mathbb{R}$ be continuous. Then, we have

$$\lim_{N \to \infty} \frac{1}{d_N} Tr\left(F\left(\Pi_N\left(-\frac{B}{2}hL_3\right)\Pi_N\right)\right)$$
$$= \int_{\Sigma(-1/2)} F\left(-\frac{B}{2}L_3(x,p)\right) \ d\mu_L(x,p)$$

where $L_3(x,p) = x_1p_2 - x_2p_1$ is the classical angular momentum.

Existence of suclusters fixing an eigenvalue of the angular momentum operator L_z . Work by M. Karasev (reduction of coherent states). Averaging Method.

イロト イポト イヨト イヨト 二日