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Limiting eigenvalue distribution theorem for the
n-sphere. A. Weinstein, 1977.

Let Sn =
{
x ∈ Rn+1 | |x| = 1

}
be the n-sphere , n ≥ 2.

Let ∆Sn be the Laplacian on Sn.

The spectrum of ∆Sn consists of discrete eigenvalues
λ` =

(
`+ n−1

2

)2
with multiplicity d` = O(`n−1), ` = 0, 1, . . .

Let V : Sn → R be a continuous potential.
Consider the Schrödinger operator H = ∆Sn + V densely defined
on L2(Sn).

The spectrum of H is discrete and, sufficiently far form the origin,
consists of clusters of eigenvalues of size no larger than ‖V ‖∞
around λ`. Each cluster has as many as d` eigenvalues counting
multiplicity.

Notation: For ` fixed and sufficiently large, denote the eigenvalues
of H within the `th cluster by λ`,m, m = 1, 2 . . . , d`.
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Theorem (A. Weinstein)
Let F ∈ C∞0 (R) and V : Sn → R continuous. Then

lim
`→∞

1
d`

d∑̀
m=0

F (λ`,m − λ`) =
∫
γ∈Γ

F (V̂ (γ))dν(γ)

with Γ = space of oriented geodesics of Sn, and V̂ : Γ→ R the
Radon transform of V .

V̂ : Γ→ R given by

V̂ (γ) = 1
2π

∫ 2π

0
V (γ(s))ds, γ ∈ Γ.

with γ(s) a parametrization of γ with respect to arc length s.

dν is the SO(n+1)-invariant normalized measure on Γ.

Note the appearence of the classical Hamiltonian flow (the
geodesic flow in this case) corresponding to the quantum
unperturbed problem (the Laplacian on Sn).
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Other ways to state Weinstein theorem:

For ` sufficiently large, consider the Riesz projector P` associated
to the cluster of eigenvalues of H around λ`.
Then

lim
`→∞

1
d`
tr [ F (P` (H − λ`)P`) ] =

∫
γ∈Γ

F (V̂ (γ))dν(γ)

The above equation has the following spirit:

(quantum mechanics and functional analysis) `→∞−−−→
(classical mechanics and symplectic geometry)

Let dµV be the measure on the real line given by dµV = V̂∗(dν).

Note that dµV can be thought of as both the measure determined
by a Riesz representation theorem and the weak limite measure of
the sequence of measures dµ` = 1

d`

∑d`
m=0 δλ`,m−λ`

. Thus

lim
`→∞

∫
R
F (x)dµ`(x) =

∫
R
F (x)dµV (x)
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Hydrogen atom Hamiltonian:
SV,~ = −~2

2 ∆Rn − 1
|x| , L2(Rn), n ≥ 2

Eigenvalues: E(~)
` = − 1

2~2( n−1
2 +`)2 , multiplicity=d` = O(`n−1),

` = 0, 1, 2, . . .

Let N be a positive integer number. Regard ~(N) = 1
n−1

2 +N .

Eigenvalues: E(~(N))
` = −1

2
( n−1

2 +N)2

( n−1
2 +`)2 , multiplicity=d` = O(`n−1),

` = 0, 1, 2, . . .

Taking ` = N , we conclude that
E

(~(N))
N = −1

2 is an eigenvalue of SV,~(N) for all N with
multiplicity dN = O(Nn−1).

The distance between E(~(N))
N = −1

2 and next neighbours is
O(N−1).
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Let Q : L2(Rn) 7→ L2(Rn) be a continuous bounded function.

Consider the operators H~ = −~2

2 ∆Rn − 1
|x| + ε(~)Q

with ε(~) = O(~1+δ), δ > 0 and ~(N) = 1
n−1

2 +N as above.

H~(N) has a cluster of dN = O(Nn−1) eigenvalues around −1/2.

Let us denote by λN,j = −1
2 + µN,j , j = 1, . . . , dN , the

eigenvalues in that cluster around −1/2.
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Theorem (Uribe, Villegas-Blas, 2008)

Let Qh be a pseudodifferential operator of order zero with principal
symbol a0 in the class S2n(1) so that ‖Qh‖ is bounded uniformly
with respect to ~. Then for F continuous on the real line,

lim
N→∞

1
dN

dN∑
j=1

F
(µN,j
ε(~)

)
=
∫

Σ(−1/2)
F

( 1
2π

∫ 2π

0
a0(φ̃t(x, p)) dt

)
dµL(x, p)

where φ̃t denotes the Hamiltonian flow of the Kepler problem on
the surface Σ(−1/2) = {(x,p) | |p|

2

2 −
1
|x| = −1

2} and dµL the
normalized Liouville measure on Σ(−1/2).

Collision orbits are included. Moser regularization (1970).
Geodesic flow ⇔ Kepler problem, energy −1/2. Time reg.
Fock transform (1929). Laplacian on the n-sphere ⇔
Hydrogen atom, negative energy. Virial thm. Coherent States.Carlos Villegas-Blas On semiclassical limiting eigenvalue distribution theorems for the hydrogen atom in a weak and constant magnetic field.
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Hydrogen atom (n = 3) in a constant magnetic field ε(~)−→B ,
−→
B = (0, 0, B). Zeeman effect.
Coulomb potential V (x) = − 1

|x| .

The Zeeman hydrogen Hamiltonian is

HV (~, B) : Dom(HV (~, B)) ⊂ L2(R3)→ L2(R3),

HV (~, B) = 1
2
(
−i~∇− ε(~)−→A

)2
− 1
|x|

= SV,~ + w(~, B).

where −→A = (B/2)(−x2, x1, 0), −→B = ∇×−→A , SV,~ = −~2

2 ∆Rn − 1
|x|

and the Zeeman perturbation w(~, B) is given by

w(h,B) = (ε(~)B)2

8 (x2
1 + x2

2)− ε(~)B
2 ~L3,

with L3 = −ı
(
x1

∂
∂x2
− x2

∂
∂x1

)
.
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Based on a stability theorem due to Avron, Herbst, Simon, we can
show that under the perturbation ε(h)−→B , the eigenvalue E = −1/2
gives rise to a cluster of nearby eigenvalues EN,j , j = 1, . . . , dN .

Theorem (Avendaño, Hislop, Villegas-Blas)

Let B > 0 be fixed, and let F be a continuous function on R. Let
ε(h) = h33/2+δ, for some δ > 0, and take h = 1/(N + 1), with
N ∈ N. For the eigenvalue cluster {EN,j} near −1/2, we have

lim
N→∞

1
dN

dN∑
j=1

F

(
EN,j − (−1/2)
ε(1/(N + 1))

)
=

∫
Σ(−1/2)

F

(
−B2 L3(x, p)

)
dµL(x, p) =

∫ 1

−1
F

(−B
2 u

)
(1− |u|) du

where L3(x, p) = x1p2 − x2p1 is the third component of the
classical angular momentum on the energy surface Σ(−1/2) with
collision orbits included. µL is the normalized Liouville measure on
Σ(−1/2). du is the Lebesgue measure on [−1, 1].
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classical angular momentum on the energy surface Σ(−1/2) with
collision orbits included. µL is the normalized Liouville measure on
Σ(−1/2). du is the Lebesgue measure on [−1, 1].

Carlos Villegas-Blas On semiclassical limiting eigenvalue distribution theorems for the hydrogen atom in a weak and constant magnetic field.



For ε(~) = ~q, q > 19, and N sufficiently large, we have that,
inside the corresponding cluster around −1/2, the spectrum of the
operator H~(N) is contained in the disjoint union of the intervals

[−1
2−

B

2
m

N + 1ε(~)−ε(~)O(N−σ),−1
2−

B

2
m

N + 1ε(~)−ε(~)O(N−σ)]

with σ > 1 and m = −N, . . . , N .

Moreover, the multiplicity in each one of those intervals is
N + 1− |m| respectively, i. e . we have sub-clusters denoted by
CN,m. Let us denote the eigenvalues of H~(N) inside the
sub-cluster CN,m by EN,m,k with k = 1, . . . , N + 1− |m|.
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Let µ = m
N+1 fixed. We have the following

Theorem (Avendaño, Hislop, Villegas-Blas)

Let B > 0 be fixed, and let F be a continuous function on R. Let
ε(h) = h19+δ, for some δ > 0, and take h = 1/(N + 1), with
N ∈ N. For the eigenvalue sub-cluster {EN,µ(N+1),k} around
−1

2 −
B
2 µε(~), we have

lim
N→∞

1
N + 1− |m|

N+1−|m|∑
k=1

F

EN,µN+1,k −
(
−1

2 −
B
2 µε(~)

)
ε2(1/(N + 1))

 =

∫
Σ(−1/2,µ)

F

(
B2

8
1

2π

∫ 2π

0
a0(φ̃t (x, p))

)
dµL,µ(x, p)

where Σ(−1/2, µ) denotes the set of points (x, p) ∈ R6 with
energy E = −1/2 and L3(x, p) = µ. The function a0 : R6 7→ R is
given by a0(x, p) = x2

1 + x2
2. The measure µL,µ is the restriction of

the Liouville measure µL to the set Σ(−1/2, µ).
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Dilation operator. For r > 0, Dr : L2(R3)→ L2(R3),
DrΨ(x) = r3/2Ψ(rx). Consider the following re-scaling:

D~2HV (~, B)D~−2 = 1
h2SV (λ(h,B))

where the scaled Zeeman hydrogen hamiltonian SV (λ(h,B)) is
defined via the effective magnetic field λ(h,B) = h3ε(h)B and
the operator SV (λ) given by:

SV (λ) = −1
2∆− 1

|x|
+ λ2

8 (x2
1 + x2

2)− λ

2L3

= SV +W (λ).

where we write SV ≡ −1
2∆− 1

|x| for the scaled hydrogen atom
Hamiltonian and

W (λ) = λ2

8 (x2
1 + x2

2)− λ

2L3.

Note that the eigenvalue −1
2 of SV,~(N) corresponds to the

eigenvalue − 1
2(N+1)2 of SV with ~ = 1

N+1 .
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Four operators:

S0 = −1
2∆

SV = −1
2∆− 1

|x|

S0(λ) = −1
2∆ + λ2

8 (x2
1 + x2

2)− λ

2L3

SV (λ) = −1
2∆− 1

|x|
+ λ2

8 (x2
1 + x2

2)− λ

2L3

Spectrum:
σ(S0) = [0,∞)

σ(SV ) =
{
EN = −1

2(N + 1)2

∣∣∣∣N = 0, 1, . . .
} ⋃

[0,∞)

σ(S0(λ)) = [λ/2,∞),

|EN − EN±1| = O(N−3)
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For N given and large, let us consider a circle ΓN with center
EN = −1

2(N+1)2 and radius rN = O(N−3).

Consider λ = λ(~, B) = ~3ε(~)B with ~ = 1/(N + 1).

PN −ΠN = −1
2πı

∫
ΓN

(SV (λ)− z)−1 dz− −1
2πı

∫
ΓN

(SV − z)−1 dz

= − 1
2πı

∫
ΓN

[
(SV (λ)− z)−1 − (SV − z)−1

]
dz

Avron, Herbst, Simon show we do not have∥∥∥(SV (λ)− z)−1 − (SV − z)−1
∥∥∥ −→ 0, λ→ 0

However

PN −ΠN = − 1
2πı

∫
ΓN

[
(SV (λ)− z)−1 − (S0(λ)− z)−1

]
−
[
(SV − z)−1 − (S0 − z)−1

]
dz
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[
(SV (λ)− z)−1 − (S0(λ)− z)−1

]
−
[
(SV − z)−1 − (S0 − z)−1

]
= (S0(λ)− z)−1

[
V (SV (λ)− z)−1 − V (SV − z)−1

]
+
[
(S0(λ)− z)−1 V − (S0 − z)−1 V

]
(SV − z)−1

Lemma (Key Lemma)

Consider z 6∈ [0,∞).
(i) We have the following norm convergence :

V (S0(λ)− z)−1 → V (S0 − z)−1, λ→ 0.

(ii) Consider λ = λ(~) with ~ = 1/(N + 1) and ε(~) = ~q,
q > 3/2. For |z− EN | = O(N−3) we have

V (S0(λ(~))− z)−1 − V (S0 − z)−1 = O
(
N−( 2

5 q−
3
5 )) , N →∞
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Theorem (Stability theorem)

Given B > 0 and q > 9, the following spectral projectors are well
defined for N sufficiently large and ~ = 1/(N + 1):

PN = − 1
2πı

∫
ΓN

(SV (λ(~, B))− z)−1 dz

ΠN = − 1
2πı

∫
ΓN

(SV − z)−1 dz.

Moreover
‖PN −ΠN‖ = O(N−

2q−33
5 )

so that, for q > 33/2 , the spectrum of SV (λ(h = 1/(N + 1), B))
inside the circle ΓN consist of a cluster of dN eigenvalues taking N
sufficiently large.
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On the size of the eigenvalue cluster around EN = −1
2(N+1)2 .

Let us denote by ẼN,j , j = 1, . . . , dN , the eigenvalues of SV (λ)
inside the circle ΓN (this notion is well defined for N large). Now
we consider the eigenvalue shifts ν̃N,j = ẼN,j − EN thinking of
them as the eigenvalues of the operator PN (SV (λ)− EN )PN .
Taking q > 33/2, we have for σ = 2q−33

5 > 0,

PN (SV (λ)− EN )PN = ΠNW (λ)ΠN + (PN −ΠN )W (λ)ΠN

+PNW (λ)ΠN

{
[I − (PN −ΠN )]−1 − I

}
= ΠNW (λ)ΠN +O(N−σ)W (λ)ΠN

+PNW (λ)ΠNO(N−σ)

We have ‖L3ΠN‖ = ‖ΠNL3ΠN‖ = O(N) and using coherent
states we can also show ‖

(
x2

1 + x2
2
)

ΠN‖ = O(N4) which implies
‖W (λ)ΠN‖ = O

(
h2ε(h)

)
. Thus we conclude

PN (SV (λ)− EN )PN
h2ε(h) = ΠN

(
−B2 hL3

)
ΠN +O(N−σ) = O(1)
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Let us denote by ẼN,j , j = 1, . . . , dN , the eigenvalues of SV (λ)
inside the circle ΓN (this notion is well defined for N large). Now
we consider the eigenvalue shifts ν̃N,j = ẼN,j − EN thinking of
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Theorem

Let F be a continuous function on R. Then for ~ = 1/(N + 1)
and q > 33/2,

1
dN

dN∑
j=1

F

(
EN,j − (−1/2)
ε(1/(N + 1))

)
= 1

dN
Tr F

(
ΠN

(
−B2 ~L3

)
ΠN

)
+O(N−σ).

Remark: It is enough to show the theorem when F is actually a
monomial. Note that L3 commutes with ΠN .
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The Fock transform.
Inverse of the stereographic projection S : Rn 7→ Sno ,

ωi = 2pi
|p|2 + 1 , i = 1, . . . , n ωn+1 = |p|

2 − 1
|p|2 + 1 .

K : L2(Sn) 7→ L2(Rn)

∀f ∈ L2(Sn) K(f)(p) =
( 2
|p|2 + 1

)n/2
f(S(p)).

J : L2(Rn) 7→ L2(Rn)

J(Ψ̂)(p) = 2
|p|2 + 1Ψ̂(p).

Denote by EN the eigenspace of A = −1
2∆Rn − 1

|x| with eigenvalue
EN = − 1

2(N+ n−1
2 )2 . Then the operator

F(EN ) → L2(Sn)
Ψ̂ 7→ K−1J−1/2Dr−1

N
(Ψ̂),

where rN = N + (n− 1)/2, is a unitary isomorphism onto VN .
Carlos Villegas-Blas On semiclassical limiting eigenvalue distribution theorems for the hydrogen atom in a weak and constant magnetic field.



THE NULL QUADRIC.

Given n a positive integer number, we define the null quadric by

Qn = {α ∈ Cn+1|α2
1 + . . .+ α2

n+1 = 0}

α ∈ Qn iff |<α| = |=α| and <α · =α = 0

σ : Qn − {0} 7−→ T ∗Sn − {0},

σ(α) =
( <α

|<α|
,−=α

)

A = {α ∈ Qn | |<α| = |=α| = 1}
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Coherent states on the n-sphere

Φα,`(w) ≡ a(`) (α ·w)` , w ∈ Sn, α ∈ A.

with a(`) a normalization constant.
Properties:

∆SnΦα,` = λ`Φα,` , Φα,` ∈ V`.
Resolution of the identity: For all f ∈ V`,

f = d`

∫
α∈A

< Φα,`, f > Φα,`dµ(α),

Π` = d`

∫
α∈A

|Φα,` >< Φα,`|dµ(α).

For T : L2(Sn) 7→ L2(Sn) a bounded operator,

tr (Π`TΠ`) = d`

∫
α∈A

< Φα,`|T |Φα,` > dµ(α)

Concentration for ` large on the great circle generated by <α
and =α.
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Coherent states for the hydrogen atom: Ψα,` = F−1Φ̂α,`

with Φ̂α,` = U−1Φα,`

Key Lemma:

Lemma
There exist r0 > 0 independent of α and N such that for all
non-negative integer numbers p and s

lim
N→∞

N s
∫
|x|≥r0

|x|p|D(N+1)2Ψα,`|2dx = 0
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Lemma

Let ΠN be the projector to the eigenspace associated to the
eigenvalue EN of the scaled hydrogen atom hamiltonian SV as
above. Then for N →∞ and k ∈ N fixed we have

ΠNL3ΠN = O(N),
ΠN (x2

1 + x2
2)kΠN = O(N4k).

Lemma

For α ∈ A, m a non-negative integer number and h = 1/(N + 1),
we have for N →∞

〈Ψα,N , (hBL3)m Ψα,N 〉 = (BL3(α))m +O(N−1)

where L3(α) = <(α)1=(α)2 −<(α)2=(α)1 is the angular
momentum in the third direction associated to the point
(x, p) =M−1(α) where M is the inverse of the Moser map
M : T ∗(Rn)→ T ∗(S3) and α is regarded as an element of T ∗1 (S3).
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Theorem

Let F : R→ R be continuous. Then, we have

lim
N→∞

1
dN

Tr

(
F

(
ΠN

(
−B2 hL3

)
ΠN

))
=
∫

Σ(−1/2)
F

(
−B2 L3(x, p)

)
dµL(x, p)

where L3(x, p) = x1p2 − x2p1 is the classical angular momentum.

Existence of suclusters fixing an eigenvalue of the angular
momentum operator Lz. Work by M. Karasev (reduction of
coherent states). Averaging Method.
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