Self-adjointness and domain of the Fröhlich Hamiltonian

Andreas Wünsch
joint work with Marcel Griesemer (to be published in JMP)

Mathematical Challenges in Quantum
Mechanics, Bressanone (Italy)
February 11th, 2016

Spectral Theory and
Dynamics of
Quantum Systems
GRADUIERTENKOLLEG 1838

Physical background

An electron in an ionic crystal polarizes its surroundings by Coulomb interaction. Electron and lattice polarization (deformation) together constitute a quasi-particle, the so-called polaron. (Source: Madelung [1])

The Polaron is described by the formal Fröhlich Hamiltonian:
(see Devreese [2] or Feynman [3])

$$
p^{2}+\int a_{k}^{*} a_{k} d k+\sqrt{\alpha} \int \frac{1}{|k|}\left(e^{i k x} a_{k}+e^{-i k x} a_{k}^{*}\right) d k
$$

Problem: No well-defined operator since $e^{ \pm i k x} /|k| \notin L^{2}\left(\mathbb{R}^{3}\right)$.
\rightarrow Introduction of an UV-cutoff

Mathematical description

The system is described by a state Ψ in the Hilbert space

$$
\mathscr{H}=L^{2}\left(\mathbb{R}^{d}\right) \otimes \mathcal{F}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)
$$

with the symmetric Fock space

$$
\mathcal{F}\left(L^{2}\left(\mathbb{R}^{d}\right)\right):=\underset{n \geq 0}{\bigoplus} \bigotimes_{s}^{n} L^{2}\left(\mathbb{R}^{d}\right)
$$

For all $\Phi, \Psi \in \mathscr{H}$, we have the inner product
$\langle\Phi, \Psi\rangle:=\sum_{n=0}^{\infty} \int d x \int d k_{1} \cdots \int d k_{n} \overline{\Phi^{(n)}\left(x ; k_{1}, \ldots, k_{n}\right)} \Psi^{(n)}\left(x ; k_{1}, \ldots, k_{n}\right)$.

Number and ladder operators

The number operator $N: D(N) \rightarrow \mathcal{F}$ is defined by

$$
(N \Psi)^{(n)}:=n \Psi^{(n)}
$$

For $f \in L^{2}\left(\mathbb{R}^{d}\right)$, we define the annihilation and creation operators on $D(\sqrt{N})$ by

$$
\begin{aligned}
& a(f) \Psi^{(n)}:=\sqrt{n}\left\langle f, \Psi^{(n)}\right\rangle \\
& a^{*}(f) \Psi^{(n)}:=\sqrt{n+1} S_{n+1}\left(f \otimes \Psi^{(n)}\right) . \\
& {\left[a(f), a^{*}(g)\right]=\langle f, g\rangle \quad \text { on } D(N) }
\end{aligned}
$$

CCR:

Fröhlich Hamiltonian with cutoff

We define the Hamiltonian with cutoff $\Lambda<\infty$ by

$$
H_{\Lambda}:=\underbrace{p^{2} \otimes \mathbb{1}_{\mathcal{F}}+\mathbb{1}_{L^{2}} \otimes N}_{=H_{0}}+\phi\left(G_{\Lambda}\right)
$$

on $D\left(H_{0}\right):=D\left(p^{2}\right) \cap D(N)$. Thereby, $p:=-i \nabla$ and

$$
\begin{aligned}
\phi\left(G_{\Lambda}\right) & :=a\left(G_{\Lambda}\right)+a^{*}\left(G_{\Lambda}\right), \\
G_{\Lambda}(x, k) & :=|k|^{-(d-1) / 2} e^{-i k x} \chi_{\Lambda}(k), \quad d \geq 2 . \\
& \left(\rightarrow\left\|G_{\infty}\right\|=\infty\right)
\end{aligned}
$$

For all $\Lambda<\infty, H_{\Lambda}$ is self-adjoint on $D\left(H_{0}\right)$ and bounded from below.

Self-adjoint realization of H (without cutoff)

1 as the self-adjoint operator associated to a quadratic form,
2 as the norm-resolvent limit of H_{Λ},
3 as the generator of a strongly continuous unitary group,
4 by using the Gross Transformation.
\rightarrow All approaches yield to the same unique self-adjoint operator H with $D(H) \subset D\left(H_{0}^{1 / 2}\right)$.
\rightarrow Only the Gross Transformation gives us an explicit representation of H and $D(H)$.

Gross transformation

We introduce for all $0<\sigma<\Lambda \leq \infty$ the unitary operator

$$
U_{\sigma, \Lambda}:=e^{i \pi\left(B_{\sigma, \Lambda}\right)}
$$

with

$$
\begin{aligned}
i \pi\left(B_{\sigma, \Lambda}\right) & :=a\left(B_{\sigma, \Lambda}\right)-a^{*}\left(B_{\sigma, \Lambda}\right), \\
B_{\sigma, \Lambda}(x, k) & :=-\frac{1}{1+k^{2}} G_{\Lambda}(x, k)\left(1-\chi_{\sigma}(k)\right), \\
G_{\Lambda}(x, k) & :=|k|^{-(d-1) / 2} e^{-i k x} \chi_{\Lambda}(k), \quad d \geq 2 .
\end{aligned}
$$

Note, that $\quad\left\|B_{\sigma, \infty}\right\|<\infty,\left\|k B_{\sigma, \infty}\right\|<\infty$, but $\left\|k^{2} B_{\sigma, \infty}\right\|=\infty$.
We want to transform

$$
U_{\sigma, \Lambda} H_{\Lambda} U_{\sigma, \Lambda}^{*}=U_{\sigma, \Lambda}\left(p^{2}+N+\phi\left(G_{\Lambda}\right)\right) U_{\sigma, \Lambda}^{*} .
$$

Self-adjointness of the transformed Hamiltonian

On $D\left(H_{0}\right)$ for $\Lambda<\infty$

$$
\begin{aligned}
U_{\sigma, \Lambda} H_{\Lambda} U_{\sigma, \Lambda}^{*}= & H_{\sigma}-2 a^{*}\left(k B_{\sigma, \Lambda}\right) \cdot p-2 p \cdot a\left(k B_{\sigma, \Lambda}\right)+a\left(k B_{\sigma, \Lambda}\right)^{2} \\
& +a^{*}\left(k B_{\sigma, \Lambda}\right)^{2}+2 a^{*}\left(k B_{\sigma, \Lambda}\right) a\left(k B_{\sigma, \Lambda}\right)+C_{\sigma, \Lambda}
\end{aligned}
$$

We define $H_{\sigma, \Lambda}^{\prime}$ by the righthand side of this equation (even for $\Lambda=\infty$).

Theorem (Griesemer, Wünsch)

Let $a:=a\left(k B_{\sigma, \infty}\right)$ and $a^{*}:=a^{*}\left(k B_{\sigma, \infty}\right)$. For $\sigma>0$ large enough we get the representation $H=U_{\sigma, \infty}^{*} H_{\sigma, \infty}^{\prime} U_{\sigma, \infty}$ where

$$
H_{\sigma, \infty}^{\prime}:=H_{\sigma}-2 a^{*} \cdot p-2 p \cdot a+a^{2}+\left(a^{*}\right)^{2}+2 a^{*} a+C_{\sigma}
$$

is a self-adjoint operator on $D\left(H_{0}\right)$. It follows that

$$
D(H)=U_{\sigma, \infty}^{*} D\left(H_{0}\right)
$$

If $\mathcal{D} \subset D\left(H_{0}\right)$ is a core of H_{0} then $U_{\sigma, \infty}^{*} \mathcal{D}$ is a core of H.

What is $D(H)=U_{\sigma, \infty}^{*} D\left(H_{0}\right)$?

We know the following mapping properties:

- for $\Lambda \leq \infty: U_{\sigma, \Lambda}^{*} D\left(H_{0}^{1 / 2}\right)=D\left(H_{0}^{1 / 2}\right) \quad \Rightarrow \quad D(H) \subset D\left(H_{0}^{1 / 2}\right)$
- for $\Lambda \leq \infty: U_{\sigma, \Lambda}^{*} D(N)=D(N)$
- for $\Lambda<\infty: U_{\sigma, \Lambda}^{*} D\left(H_{0}\right) \subset D\left(p^{2}\right)$
\Rightarrow only for $\Lambda<\infty: U_{\sigma, \Lambda}^{*} D\left(H_{0}\right)=D\left(H_{0}\right)$

In fact, we have

$$
U_{\sigma, \infty}^{*} D\left(H_{0}\right) \cap D\left(H_{0}\right)=\{0\}
$$

which we get from the more general
Theorem (Griesemer, Wünsch)
(i) $D(H) \subset\left(\bigcap_{0 \leq s<3 / 2} D\left(|p|^{s}\right)\right) \cap D(N)$
(ii) $D(H) \cap D\left(|p|^{3 / 2}\right)=\{0\}$

Idea of the proof

Theorem (Griesemer, Wünsch)

$$
\begin{aligned}
& \text { (i) } \quad D(H) \subset\left(\bigcap_{0 \leq s<3 / 2} D\left(|p|^{s}\right)\right) \cap D(N) \\
& \text { (ii) } D(H) \cap D\left(|p|^{3 / 2}\right)=\{0\}
\end{aligned}
$$

Idea: $D(H)=U_{\sigma, \infty}^{*} D\left(H_{0}\right), \quad D\left(H_{0}\right)=D\left(p^{2}\right) \cap D(N)$
(i) Let $1 \leq s \leq 2$ and $\Psi \in D\left(H_{0}\right)$ and look when $\left\||p|^{s} U_{\sigma, \infty}^{*} \Psi\right\|<\infty$.
(ii) Let $\Psi \in D\left(H_{0}\right)$ and suppose that $U_{\sigma, \infty}^{*} \Psi \in D\left(|p|^{3 / 2}\right)$.

Considering $\left\||p|^{3 / 2} U_{\sigma, \infty}^{*} \Psi\right\|$ which then has to be finite, the only possibility is $\Psi=0$.

Heuristic stuff

Remind:
■ $D(H)=U_{\sigma, \infty}^{*} D\left(H_{0}\right)$

- $D(H) \cap D\left(H_{0}\right)=\{0\}$

■ $U_{\sigma, \infty}^{*}$ maps cores of H_{0} to cores of H
Consider for Ψ from a suitable domain in $\mathscr{H} \backslash\{0\}$

$$
(p^{2}+\underbrace{N+a\left(G_{\infty}\right)}_{O K}+a^{*}\left(G_{\infty}\right)) \Psi
$$

- $a^{*}\left(G_{\infty}\right)$ maps outside of $\mathscr{H} \Rightarrow \Psi$ must not be $\in D\left(H_{0}\right)$.
- The set $\mathcal{D}:=\left\{\varphi \otimes e^{i \pi(f)} \Omega \mid \varphi, f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)\right\}$ is a core of H_{0}, thus $U_{\sigma, \infty}^{*} \mathcal{D}$ is a core of H. For $\Psi \in U_{\sigma, \infty}^{*} \mathcal{D}$, one can formally calculate the state above and see the compensation of the divergent terms.
\Rightarrow Meaning of the formal expression above for no $\Psi \in D\left(H_{0}\right)$ except $\Psi=0$.

Bibliography

[1] Otfried Madelung, Introduction to Solid-State Theory, Springer-Verlag (1996)
[2] Jozef T. Devreese, Encyclopedia of Applied Physics 14, 383-413 (1996)
[3] Richard P. Feynman, Statistical Mechanics, Perseus Books Reading Massachusetts (1998)
[4] Rupert L. Frank and Benjamin Schlein, Letters in Mathematical Physics 0377-9017, 1-19 (2014)
[5] Edward Nelson, Journal of Mathematical Physics 5, 1190-1197 (1964)

