Self-adjointness and domain of the Fröhlich Hamiltonian

Andreas Wünsch joint work with Marcel Griesemer (to be published in JMP)

Mathematical Challenges in Quantum Mechanics, Bressanone (Italy) February 11th, 2016

<ロト (四) (三) (三) (三)

An electron in an ionic crystal polarizes its surroundings by Coulomb interaction. Electron and lattice polarization (deformation) together constitute a quasi-particle, the so-called polaron. (Source: Madelung [1])

The Polaron is described by the *formal* Fröhlich Hamiltonian:

(see Devreese [2] or Feynman [3])

$$p^{2} + \int a_{k}^{*} a_{k} dk + \sqrt{\alpha} \int \frac{1}{|k|} \left(e^{ikx} a_{k} + e^{-ikx} a_{k}^{*} \right) dk$$

Problem: No well-defined operator since $e^{\pm ikx}/|k| \notin L^2(\mathbb{R}^3)$. \rightarrow Introduction of an UV-cutoff The system is described by a state Ψ in the Hilbert space

$$\mathscr{H} = L^2(\mathbb{R}^d) \otimes \mathcal{F}\left(L^2(\mathbb{R}^d)\right)$$

with the symmetric Fock space

$$\mathcal{F}(L^2(\mathbb{R}^d)) := \bigoplus_{n \ge 0} \bigotimes_s^n L^2(\mathbb{R}^d).$$

For all $\Phi,\Psi\in\mathscr{H},$ we have the inner product

$$\langle \Phi, \Psi \rangle := \sum_{n=0}^{\infty} \int dx \int dk_1 \cdots \int dk_n \overline{\Phi^{(n)}(x; k_1, \dots, k_n)} \Psi^{(n)}(x; k_1, \dots, k_n).$$

 The number operator $N: D(N) \to \mathcal{F}$ is defined by

$$(N\Psi)^{(n)} := n\Psi^{(n)}.$$

For $f\in L^2(\mathbb{R}^d),$ we define the annihilation and creation operators on $D(\sqrt{N})$ by

$$a(f)\Psi^{(n)} := \sqrt{n} \langle f, \Psi^{(n)} \rangle,$$

$$a^*(f)\Psi^{(n)} := \sqrt{n+1} S_{n+1} \left(f \otimes \Psi^{(n)} \right).$$

 $\mathsf{CCR} : \qquad \qquad [a(f),a^*(g)] = \langle f,g\rangle \quad \text{ on } D(N)$

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

We define the Hamiltonian with cutoff $\Lambda < \infty$ by

$$H_{\Lambda} := \underbrace{p^2 \otimes \mathbb{1}_{\mathcal{F}} + \mathbb{1}_{L^2} \otimes N}_{=H_0} + \phi(G_{\Lambda})$$

on $D(H_0):=D(p^2)\cap D(N).$ Thereby, $p:=-i\nabla$ and

$$\phi(G_{\Lambda}) := a(G_{\Lambda}) + a^*(G_{\Lambda}),$$

$$G_{\Lambda}(x,k) := |k|^{-(d-1)/2} e^{-ikx} \chi_{\Lambda}(k), \quad d \ge 2.$$

$$(\to ||G_{\infty}|| = \infty)$$

For all $\Lambda < \infty$, H_{Λ} is self-adjoint on $D(H_0)$ and bounded from below.

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

- **1** as the self-adjoint operator associated to a quadratic form,
- 2 as the norm-resolvent limit of H_{Λ} ,
- **3** as the generator of a strongly continuous unitary group,
- 4 by using the Gross Transformation.
- \to All approaches yield to the same unique self-adjoint operator H with $D(H) \subset D(H_0^{1/2}).$
- \rightarrow Only the Gross Transformation gives us an explicit representation of H and D(H).

・ロト ・個ト ・ヨト ・ヨト

Gross transformation

We introduce for all $0 < \sigma < \Lambda \leq \infty$ the unitary operator

$$U_{\sigma,\Lambda} := e^{i\pi(B_{\sigma,\Lambda})}$$

with

$$i\pi(B_{\sigma,\Lambda}) := a(B_{\sigma,\Lambda}) - a^*(B_{\sigma,\Lambda}),$$

$$B_{\sigma,\Lambda}(x,k) := -\frac{1}{1+k^2}G_{\Lambda}(x,k)\left(1-\chi_{\sigma}(k)\right),$$

$$G_{\Lambda}(x,k) := |k|^{-(d-1)/2}e^{-ikx}\chi_{\Lambda}(k), \quad d \ge 2.$$

Note, that $\|B_{\sigma,\infty}\| < \infty$, $\|kB_{\sigma,\infty}\| < \infty$, but $\|k^2B_{\sigma,\infty}\| = \infty$.

We want to transform

$$U_{\sigma,\Lambda}H_{\Lambda}U_{\sigma,\Lambda}^* = U_{\sigma,\Lambda}\left(p^2 + N + \phi(G_{\Lambda})\right)U_{\sigma,\Lambda}^*.$$

Self-adjointness of the transformed Hamiltonian

On $D(H_0)$ for $\Lambda < \infty$

$$U_{\sigma,\Lambda}H_{\Lambda}U_{\sigma,\Lambda}^{*} = H_{\sigma} - 2a^{*}(kB_{\sigma,\Lambda}) \cdot p - 2p \cdot a(kB_{\sigma,\Lambda}) + a(kB_{\sigma,\Lambda})^{2} + a^{*}(kB_{\sigma,\Lambda})^{2} + 2a^{*}(kB_{\sigma,\Lambda})a(kB_{\sigma,\Lambda}) + C_{\sigma,\Lambda}.$$

We define $H'_{\sigma,\Lambda}$ by the righthand side of this equation (even for $\Lambda = \infty$).

Theorem (Griesemer, Wünsch)

Let $a := a(kB_{\sigma,\infty})$ and $a^* := a^*(kB_{\sigma,\infty})$. For $\sigma > 0$ large enough we get the representation $H = U^*_{\sigma,\infty}H'_{\sigma,\infty}U_{\sigma,\infty}$ where

$$H'_{\sigma,\infty} := H_{\sigma} - 2a^* \cdot p - 2p \cdot a + a^2 + (a^*)^2 + 2a^*a + C_{\sigma}$$

is a self-adjoint operator on $D(H_0)$. It follows that

$$D(H) = U^*_{\sigma,\infty} D(H_0).$$

If $\mathcal{D} \subset D(H_0)$ is a core of H_0 then $U^*_{\sigma,\infty}\mathcal{D}$ is a core of H.

What is $D(H) = U^*_{\sigma,\infty}D(H_0)$?

We know the following mapping properties:

$$\begin{array}{ll} & \text{ for } \Lambda \leq \infty \colon U^*_{\sigma,\Lambda} D(H_0^{1/2}) = D(H_0^{1/2}) \quad \Rightarrow \quad D(H) \subset D(H_0^{1/2}) \\ & \text{ for } \Lambda \leq \infty \colon U^*_{\sigma,\Lambda} D(N) = D(N) \\ & \text{ for } \Lambda < \infty \colon U^*_{\sigma,\Lambda} D(H_0) \subset D(p^2) \\ & \Rightarrow \text{ only for } \Lambda < \infty \colon U^*_{\sigma,\Lambda} D(H_0) = D(H_0) \end{array}$$

In fact, we have

$$U^*_{\sigma,\infty}D(H_0) \cap D(H_0) = \{0\}$$

which we get from the more general

Theorem (Griesemer, Wünsch)

(i)
$$D(H) \subset \left(\bigcap_{0 \leq s < 3/2} D(|p|^s)\right) \cap D(N)$$

(ii) $D(H) \cap D(|p|^{3/2}) = \{0\}$

Theorem (Griesemer, Wünsch)

(i)
$$D(H) \subset \left(\bigcap_{0 \leq s < 3/2} D(|p|^s)\right) \cap D(N)$$

(ii) $D(H) \cap D(|p|^{3/2}) = \{0\}$

 $\mathsf{Idea:} \ D(H) = U^*_{\sigma,\infty} D(H_0), \quad D(H_0) = D(p^2) \cap D(N)$

- (i) Let $1 \leq s \leq 2$ and $\Psi \in D(H_0)$ and look when $\||p|^s U^*_{\sigma,\infty} \Psi\| < \infty$.
- (ii) Let $\Psi \in D(H_0)$ and suppose that $U^*_{\sigma,\infty}\Psi \in D(|p|^{3/2})$. Considering $|||p|^{3/2}U^*_{\sigma,\infty}\Psi||$ which then has to be finite, the only possibility is $\Psi = 0$.

Heuristic stuff

Remind:

- $D(H) = U^*_{\sigma,\infty} D(H_0)$
- $D(H) \cap D(H_0) = \{0\}$
- $U^*_{\sigma,\infty}$ maps cores of H_0 to cores of H

Consider for Ψ from a suitable domain in $\mathscr{H} \backslash \{0\}$

$$\left(p^2 + \underbrace{N + a(G_{\infty})}_{OK} + a^*(G_{\infty})\right)\Psi.$$

- $a^*(G_\infty)$ maps outside of $\mathscr{H} \Rightarrow \Psi$ must not be $\in D(H_0)$.
- The set $\mathcal{D} := \{\varphi \otimes e^{i\pi(f)}\Omega \mid \varphi, f \in C_0^{\infty}(\mathbb{R}^d)\}$ is a core of H_0 , thus $U_{\sigma,\infty}^*\mathcal{D}$ is a core of H. For $\Psi \in U_{\sigma,\infty}^*\mathcal{D}$, one can *formally* calculate the state above and see the compensation of the divergent terms.
- ⇒ Meaning of the *formal* expression above for no $\Psi \in D(H_0)$ except $\Psi = 0.$

- Otfried Madelung, Introduction to Solid-State Theory, Springer-Verlag (1996)
- [2] Jozef T. Devreese, Encyclopedia of Applied Physics 14, 383–413 (1996)
- [3] Richard P. Feynman, Statistical Mechanics, Perseus Books Reading Massachusetts (1998)
- [4] Rupert L. Frank and Benjamin Schlein, Letters in Mathematical Physics 0377–9017, 1–19 (2014)
- [5] Edward Nelson, Journal of Mathematical Physics 5, 1190–1197 (1964)