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Physical background

_-+_—$7}"/41|::{>J An electron in an ionic crystal polarizes its surroundings by Coulomb interaction. Electron

and lattice polarization (deformation) together constitute a quasi-particle, the so-called
+——=  polaron. (Source: Madelung [1])

The Polaron is described by the formal Frohlich
Hamiltonian:
(see Devreese [2] or Feynman [3])

1 . .
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Problem: No well-defined operator since e /|k| ¢ L?(R?).
— Introduction of an UV-cutoff



Mathematical description

The system is described by a state W in the Hilbert space
A = L*(RY) @ F (L*(RY))
with the symmetric Fock space

F(L(RY) = D Q; L*(R?).

n>0

For all &, ¥ € J#, we have the inner product

(®,T) := Z/dz/dkl : ~~/dknfb(")(x;kl,...,kn)\Il(”)(x;kl,...,kn).
n=0
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Number and ladder operators

The number operator N : D(N) — F is defined by
(N®)®) = nu™),

For f € L?(R%), we define the annihilation and creation operators on

D(V/N) by
a( /U™ = /n (f, 00,
a* ()T = V11 Spis (f ® \1/<">) :

CCR: [a(f),a*(9)] = (f,g) on D(N)
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Frohlich Hamiltonian with cutoff

We define the Hamiltonian with cutoff A < oo by

Hy:=p° @1y 412 @ N +¢(Gn)

=H,

on D(Hp) := D(p*) N D(N). Thereby, p := —iV and

¢)(GA) = a(GA) + a*(GA),
Galz, k) == |[k|~@ D/ 2e=they (k) d > 2.
(= |G| = 0)

For all A < 0o, Hy is self-adjoint on D(Hy) and bounded from below.
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Self-adjoint realization of H (without cutoff)

as the self-adjoint operator associated to a quadratic form,

]

as the norm-resolvent limit of Hjy,

]

as the generator of a strongly continuous unitary group,

B

by using the Gross Transformation.

1

All approaches yield to the same unique self-adjoint operator H with
D(H) c D(H?).

— Only the Gross Transformation gives us an explicit representation of
H and D(H).
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Gross transformation

We introduce for all 0 < ¢ < A < oo the unitary operator
Uy p = ™ (Bon)

with

im(Bg,n) == a(Bo,a) — 0" (Bo.A),

1
By a(z, k) := —WGA(:E, k) (1 - Xg(k‘)),

Ga(x, k) == k|~ 2e=thay \(k), d>2.

Note, that || Bg.ooll < 00, [[kBo,coll < 00, but ||k Bg o] = .

We want to transform

UsaHAU; = U (07 + N + ¢(Ga)) Uj 4.

7/12



Self-adjointness of the transformed Hamiltonian

On D(Hp) for A < o0

UsAHAUZ \ =H, — 2a*(kByp) - p — 2p - a(kBgp) + a(kBo,a)?
+a*(kBya)? +2a* (kBya)a(kByp) + Cop.

We define H, . by the righthand side of this equation (even for A = o).

Theorem (Griesemer, Wiinsch)

Let a := a(kBy,) and a* := a*(kBy,o). For o > 0 large enough we
get the representation H = Uy . H| .U, ~ where

H, . :=H,—2a"-p—2p-a+a®+(a*)* +2a*a+C,
is a self-adjoint operator on D(Hy). It follows that
D(H) = U, D(Ho).

If D C D(Hy) is a core of Hy then U; . /D is a core of H.



What is D(H) = Uz .. D(Hy) ?

We know the following mapping properties:
m for A < oo U \D(Hy'?) = D(Hy*) = D(H)c D(H,)”)
m for A <oo: Uy \D(N) = D(N)
m for A < oo: U} \D(Hp) C D(p?)

= only for A < co: Uy \D(Ho) = D(Hp)
In fact, we have
Uy o D(Ho) N D(Ho) = {0}
which we get from the more general

Theorem (Griesemer, Wiinsch)

(4) D(H)C( N D(IPIS))OD(N)

0<s<3/2
(i) D(H)nD(|p[*?) = {0}
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|dea of the proof

Theorem (Griesemer, Wiinsch)

@) DH)c | (] D(pl*) | nDN)
0<s<3/2

(it) D(H) N D(|p|*?) = {0}

ldea: D(H) = Uz, ..D(H,), D(Ho) = D(p?) N D(N)
(i) Let 1 <s <2and ¥ € D(Hy) and look when ||[p|*U; ¥ < oc.
(i) Let ¥ € D(Hy) and suppose that U W € D(|p|>/?).

Considering |||p|*/2U% ., ¥|| which then has to be finite, the only
possibility is ¥ = 0.
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Heuristic stuff

Remind:
m D(H) =U; ., D(Ho)
m D(H)N D(Hp) = {0}
m U} __ maps cores of Hy to cores of H

0,00

Consider for ¥ from a suitable domain in J#\{0}

(p2 +N +;l((Goo) +a*(Goo)) 0.

- a*(Gs) maps outside of 7# = ¥ must not be € D(Hj).

- Theset D := {p @™ Q| o, f € C3°(R?)} is a core of Hy, thus
U oD is acore of H. For ¥ € U; D, one can formally calculate
the state above and see the compensation of the divergent terms.

= Meaning of the formal expression above for no ¥ € D(H,) except
¥ = 0.
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