Mathematical Challenges in Quantum Mechanics february 8 - 13, 2016, Bressanone

On the optimal transport of semiclassical measures

Lorenzo Zanelli Department of Mathematics, University of Padova.

The main topics of this talk

- Schrödinger dynamics on the flat torus
- Wigner measures
- Optimal transport of measures

The Schrödinger dynamics

Let $\mathbb{T}^n:=(\mathbb{R}/2\pi\mathbb{Z})^n$, $V\in C^\infty(\mathbb{T}^n)$ and

$$\widehat{H}_{\hbar} := -\frac{\hbar^2}{2} \Delta_x + V(x).$$

The dynamics is given by the one parameter group of unitary operators

$$U_{\hbar}(t) := e^{-i\widehat{H}_{\hbar}t/\hbar}$$

on $\varphi_{\hbar} \in L^2(\mathbb{T}^n)$. We look at

$$\psi_{\hbar}(t,x) = (U_{\hbar}(t)\varphi_{\hbar})(x).$$

The object to study

Here we study the path of Borel probability measures

$$(\omega_t)_{0 \le t \le 1} \in \mathcal{P}(\mathbb{T}^n \times \mathbb{R}^n)$$

given by semiclassical measures (Wigner measures) of $U_{\hbar}(t)\varphi_{\hbar}$, i.e.

$$\lim_{\hbar \to 0^+} \langle U_{\hbar}(t)\varphi_{\hbar}, \operatorname{Op}_{\hbar}^w(\phi)U_{\hbar}(t)\varphi_{\hbar} \rangle_{L^2} = \int_{\mathbb{T}^n \times \mathbb{R}^n} \phi(x, p) d\omega_t(x, p) \quad 0 \le t \le 1,$$

for any test function $\phi(x,p)$ s.t. $\widehat{\phi}=F^{-1}(\phi)$ is compactly supported. **Remind** The continuous path of semiclassical measures ω_t solves the Liouville equation in the measure sense,

$$\partial_t \, \omega_t + p \cdot \nabla_x \, \omega_t - \nabla_x V \cdot \nabla_p \, \omega_t = 0.$$

Equivalently, $\omega_t = (\phi_H^t)_\star \omega_0$ where ϕ_H^t is the Hamiltonian flow.

The class of symbols $b \in S^m_{\rho,\delta}(\mathbb{T}^n \times \mathbb{R}^n)$, $m \in \mathbb{R}$, $0 \le \delta$, $\rho \le 1$, consisting of those functions in $C^\infty(\mathbb{T}^n \times \mathbb{R}^n; \mathbb{R})$ which are 2π -periodic in x and for which for all $\alpha, \beta \in \mathbb{Z}^n_+$ there exists $C_{\alpha\beta} > 0$ such that $\forall (x, \eta) \in \mathbb{T}^n \times \mathbb{R}^n$

$$|\partial_x^{\beta} \partial_{\eta}^{\alpha} b(x,\eta)| \le C_{\alpha\beta m} \langle \eta \rangle^{m-\rho|\alpha|+\delta|\beta|}$$

where $\langle \eta \rangle := (1+|\eta|^2)^{1/2}$. In particular, the set $S^m_{1,0}(\mathbb{T}^n \times \mathbb{R}^n)$ is denoted by $S^m(\mathbb{T}^n \times \mathbb{R}^n)$. The toroidal Pseudodifferential Operator

$$b(X,D)\psi(x) := (2\pi)^{-n} \sum_{\kappa \in \mathbb{Z}^n} \int_{\mathbb{T}^n} e^{i\langle x-y,\kappa\rangle} b(x,\kappa)\psi(y) dy$$

(M. Ruzhansky, V. Turunen, Quantization of pseudo-differential operators on the torus, J. Fourier Anal. Appl., 2010).

The toroidal Weyl quantization

$$\operatorname{Op}_{\hbar}^{w}(b)\psi(x):=(2\pi)^{-n}\sum_{\kappa\in\mathbb{Z}^{n}}\int_{\mathbb{T}^{n}}e^{i\langle x-y,\kappa\rangle}b(y,\hbar\kappa/2)\psi(2y-x)dy$$

$$\operatorname{Op}_{\hbar}^{w}(b)\psi(x) = (\sigma(X, D) \circ T_{x} \psi)(x)$$

where
$$(T_x\psi)(y):=\psi(2y-x)$$
 and $\sigma\sim\sum_{\alpha\geq 0}\frac{1}{\alpha!}\triangle_{g}^{\alpha}D_{y}^{(\alpha)}b(y,\hbar\eta/2)\big|_{y=x}$

The targets

• Select initial data $\varphi_{\hbar} \in L^2(\mathbb{T}^n)$ such that the projected measures on the torus by the canonical projection $\pi: \mathbb{T}^n \times \mathbb{R}^n \longrightarrow \mathbb{T}^n$

$$\sigma_t := \pi_{\sharp}(\omega_t), \qquad 0 \le t \le 1,$$

are optimal displacement interpolations of measures in the sense of the Optimal Transport theory.

• Conversely, for a given optimal displacement interpolation of measures σ_t look for $\varphi_\hbar \in L^2(\mathbb{T}^n)$ such that

$$\pi_{\mathsf{ff}}(\omega_t) = \sigma_t, \qquad 0 \le t \le 1.$$

In other words, we study the link:

Optimal path of measures \iff path of semiclassical measures.

A class of displacement interpolations of measures

Fix $\sigma_0, \sigma_1 \in \mathcal{P}(\mathbb{T}^n)$; we look at a continuous path $(\sigma_t)_{0 \leq \tau \leq 1} \in \mathcal{P}(\mathbb{T}^n)$ which is a minimum curve for

$$\inf_{\gamma} \left(\int_{\Omega} \int_{0}^{1} \frac{m}{2} |\dot{\gamma}(\tau,\zeta)|^{2} - V(\gamma(\tau,\zeta)) d\tau d\mathbb{P}(\zeta) \right)$$

where the infimum is over all the random curves $\gamma:[0,1]\times\Omega\longrightarrow\mathbb{T}^n$ such that

$$Law(\gamma(\tau,\cdot)) = \sigma_{\tau}.$$

More in general, here we fix $P \in \mathbb{R}^n$ and look at

$$\inf_{\gamma} \left(\int_{\Omega} \int_{0}^{1} \frac{m}{2} |\dot{\gamma}(\tau,\zeta)|^{2} - V(\gamma(\tau,\zeta)) - P \cdot \dot{\gamma}(\tau,\zeta) \, d\tau \, d\mathbb{P}(\zeta) \right)$$

C. Villani: Optimal transport old and new, Springer (2008)

Transport maps

• Let $L(x,v) = \frac{1}{2}|v|^2 - V(x) - P \cdot v$ and

$$A^{0,t}(\gamma) := \int_0^t L(\gamma(\tau), \dot{\gamma}(\tau)) d\tau$$

the related Lagrangian Action. Define the cost function

$$c^{0,t}(x,y) := \inf_{\gamma} A^{0,t}(\gamma)$$

for cont. piecewise C^1 curves $\gamma:[0,t]\to\mathbb{T}^n$, $\gamma(0)=x$ and $\gamma(t)=y$.

• Fix $\sigma_0, \sigma_t \in \mathcal{P}_{ac}(\mathbb{T}^n)$ and look for the transport map T_t (Borel map) which is minimum for

$$\inf_{T_t} \int_{\mathbb{T}^n} c^{0,t}(x, T_t(x)) d\sigma_0(x)$$

when $\sigma_t = (T_t)_{\star} \sigma_0$.

P. Lee: Displacement Interpolation from a Hamiltonian point of view,

J. Funct. Anal. (2013)

The initial data for the Schrödinger dynamics

For the phase of the wave functions, fix a Lipschitz continuous weak KAM solution of positive type for the stationary H-J equation (A. Fathi: Weak KAM Theorem in Lagrangian Dynamics, Lecture Notes) (P. Bernard, B. Buffoni: Weak KAM Pairs and Monge-Kantorovich Duality, Adv. St. in Pure Math., 2007)

$$\frac{1}{2}|P + \nabla_x S_+(x)|^2 + V(x) = \bar{H}(P), \quad P \in \mathbb{R}^n,$$

where

$$\bar{H}(P) = \sup_{x} \inf_{v \in C^1} \frac{1}{2} |P + \nabla_x v(x)|^2 + V(x)$$

is the so-called effective Hamiltonian (L.C. Evans: some new PDE methods for weak KAM theory, Calc. Var. and PDE 2003). We assume that $\varphi_h \in L^2(\mathbb{T}^n)$ is such that for some $\sigma_0 \in \mathcal{P}_{ac}(\mathbb{T}^n)$,

$$\lim_{\hbar \to 0^+} \langle \varphi_{\hbar}, \operatorname{Op}_{\hbar}^w(\phi) \varphi_{\hbar} \rangle_{L^2} = \int_{\mathbb{T}^n} \phi(x, P + \nabla_x S_+(x)) d\sigma_0(x).$$

In other words, we are assuming that there exists a semiclassical measure associated with φ_\hbar taking the form

$$\omega_0(x,p) = \delta(p - P - \nabla_x S_+(x))\sigma_0(x), \quad \sigma_0 \in \mathcal{P}_{ac}(\mathbb{T}^n).$$

In the case $P \in \ell \mathbb{Z}^n$, $\ell > 0$, $\hbar^{-1} \in \ell^{-1} \mathbb{N}$ and a suitable subset of the above test functions, the typical example is given by WKB type wave functions

$$\varphi_{\hbar}(x) = a_{\hbar}(x) e^{i(P \cdot x + S_{+}(x))/\hbar}$$

where $a_{\hbar} \in H^1(\mathbb{T}^n; \mathbb{R})$ fulfills $||a_{\hbar}||_{L^2} = 1$, $||\hbar \nabla a_{\hbar}||_{L^2} \to 0$ as $\hbar \to 0$, $a^2(x)dx \to \sigma_0$ weakly as measures on \mathbb{T}^n and $\operatorname{supp}(\sigma_0) \subseteq \operatorname{dom}(\nabla S_+)$. In the case $P \notin \ell \mathbb{Z}^n$, another class of periodic wave function

$$\varphi_{\hbar}(x) = \int_{\mathbb{T}^n \times \mathbb{R}^n} \widetilde{\varphi}_{\hbar, y, \eta}(x) \, d\omega_0(y, \eta)$$

where $\widetilde{\varphi}_{\hbar,y,\eta}(x)$ are coherent states.

The reason of this choice

The nice property

$$\phi_H^t(\operatorname{Graph}(P + \nabla_x S_+)) \subseteq \operatorname{Graph}(P + \nabla_x S_+) \qquad \forall t \ge 0$$

has the following consequences

•
$$\omega_t := (\phi_H^t)_{\star} \omega_0(x, p) = \delta(p - \nabla_x S_+(x)) \sigma_t(x).$$

• $\sigma \in C([0,1];\mathcal{P}(\mathbb{T}^n))$ solves the continuity equation

$$\partial_t \sigma_t(x) + \operatorname{div}_x \left(\frac{1}{m} (P + \nabla_x S_+(x)) \sigma_t(x) \right) = 0$$

• For $\Psi^t(x) := \pi \circ \phi^t_H(x, P + \nabla_x S_+(x))$ the above path reads

$$\sigma_t = (\Psi^t)_{\sharp}(\sigma_0).$$

The first result

Theorem

Let $\varphi_{\hbar} \in L^2(\mathbb{T}^n)$ as above, $\omega_0 \in \mathcal{P}(\mathbb{T}^n \times \mathbb{R}^n)$ be a linked semiclassical measure. Let $\phi_H^t: \mathbb{T}^n \times \mathbb{R}^n \to \mathbb{T}^n \times \mathbb{R}^n$ be the Hamiltonian flow of $H = |p|^2/2m + V(x)$. Then, the $\omega_t := (\phi_H^t)_{\sharp}\omega_0$ is a semiclassical measure associated to $\psi_{\hbar}(t,\cdot)$ and

$$\omega_t(x,p) = \delta(p - P - \nabla_x S_+(x))\sigma_t(x)$$

and the path $(\sigma_t)_{0 \leq t \leq 1} \in \mathcal{P}(\mathbb{T}^n)$ equals for \mathcal{L}^1 - a.e. $0 \leq t \leq 1$ a continuous displacement interpolation between σ_0 and σ_1 . By defining $\Psi^t(x) := \pi \circ \phi_H^t(x, P + \nabla_x S_+(x))$,

$$\int_{\mathbb{T}^n} g(x) d\sigma_t(x) = \int_{\mathbb{T}^n} g(\Psi^t(x)) d\sigma_0(x) \quad \forall g \in C^{\infty}(\mathbb{T}^n).$$

The complementary viewpoint

Theorem

Let $\sigma_0 \in \mathcal{P}_{ac}(\mathbb{T}^n)$ and assume the uniqueness for solutions $\sigma \in C([0,1];\mathcal{P}(\mathbb{T}^n))$ of

$$\partial_t \sigma_t(x) + \operatorname{div}_x \left(\frac{1}{m} (P + \nabla_x S_+(x)) \sigma_t(x) \right) = 0.$$

Define the lift $\omega_t := \delta(p - P - \nabla_x S_+) \sigma_t \in \mathcal{P}(\mathbb{T}^n \times \mathbb{R}^n)$. Then, there exists φ_\hbar such that ω_0 is the unique linked semiclassical measure. Any ω_t is a semiclassical measure linked to $\psi_\hbar(t,x) := (U_\hbar(t) \varphi_\hbar)(x)$.

Remark 1: works for smooth S_+ , for example in the one-dim case. **Remark 2**: several open problems: can we recover all the optimal displacement interpolations? What are the related wave functions?

References

Download at my webpage $http://www.math.unipd.it/\sim lzanelli$

L. Zanelli: Schrödinger dynamics and optimal transport of measures on the torus. Preprint.

L. Zanelli: On the optimal transport of semiclassical measures. Applied Mathematics and Optimization, online first october 2015.

Perspectives

Further studies of the link

Optimal paths of measures \iff paths of semiclassical measures.

This is part of a more general Project (2016-2018) involving

- Optimal transport theory
- Schrödinger operators
- Spectral theory
- Weak solutions of the H-J equation

Scientific collaborations:

- F. Cardin (Univ. Padova)
- A. Parmeggiani (Univ. Bologna)
- K. Pravda-Starov (Univ. Rennes 1)
- C. Sparber (Univ. Illinois, Chicago)

Thank you for the attention