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The main topics of this talk

Schrödinger dynamics on the flat torus

Wigner measures

Optimal transport of measures



The Schrödinger dynamics

Let Tn := (R/2πZ)n, V ∈ C∞(Tn) and

Ĥ~ := −~2

2
∆x + V (x).

The dynamics is given by the one parameter group of unitary operators

U~(t) := e−iĤ~t/~

on ϕ~ ∈ L2(Tn). We look at

ψ~(t, x) = (U~(t)ϕ~)(x).



The object to study

Here we study the path of Borel probability measures

(ωt)0≤t≤1 ∈ P(Tn × Rn)

given by semiclassical measures (Wigner measures) of U~(t)ϕ~, i.e.

lim
~→0+

〈U~(t)ϕ~,Opw~ (φ)U~(t)ϕ~〉L2 =

∫
Tn×Rn

φ(x, p)dωt(x, p) 0 ≤ t ≤ 1,

for any test function φ(x, p) s.t. φ̂ = F−1(φ) is compactly supported.
Remind The continuous path of semiclassical measures ωt solves the
Liouville equation in the measure sense,

∂t ωt + p · ∇x ωt −∇xV · ∇p ωt = 0.

Equivalently, ωt = (φtH)?ω0 where φtH is the Hamiltonian flow.



The class of symbols b ∈ Smρ,δ(Tn ×Rn), m ∈ R, 0 ≤ δ, ρ ≤ 1, consisting
of those functions in C∞(Tn ×Rn;R) which are 2π-periodic in x and for
which for all α, β ∈ Zn+ there exists Cαβ > 0 such that ∀(x, η) ∈ Tn×Rn

|∂βx∂αη b(x, η)| ≤ Cαβm〈η〉m−ρ|α|+δ|β|

where 〈η〉 := (1 + |η|2)1/2. In particular, the set Sm1,0(Tn × Rn) is
denoted by Sm(Tn × Rn). The toroidal Pseudodifferential Operator

b(X,D)ψ(x) := (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉b(x, κ)ψ(y)dy

(M. Ruzhansky, V. Turunen, Quantization of pseudo-differential operators

on the torus, J. Fourier Anal. Appl., 2010).
The toroidal Weyl quantization

Opw~ (b)ψ(x) := (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉b(y, ~κ/2)ψ(2y − x)dy

Opw~ (b)ψ(x) = (σ(X,D) ◦ Tx ψ)(x)

where (Txψ)(y) := ψ(2y − x) and σ ∼
∑
α≥0

1
α!4

α
ηD

(α)
y b(y, ~η/2)

∣∣
y=x

.



The targets

• Select initial data ϕ~ ∈ L2(Tn) such that the projected measures on
the torus by the canonical projection π : Tn × Rn −→ Tn

σt := π](ωt), 0 ≤ t ≤ 1,

are optimal displacement interpolations of measures in the sense of the
Optimal Transport theory.
• Conversely, for a given optimal displacement interpolation of measures
σt look for ϕ~ ∈ L2(Tn) such that

π](ωt) = σt, 0 ≤ t ≤ 1.

In other words, we study the link:

Optimal path of measures ⇐⇒ path of semiclassical measures.



A class of displacement interpolations of measures

Fix σ0, σ1 ∈ P(Tn); we look at a continuous path (σt)0≤τ≤1 ∈ P(Tn)
which is a minimum curve for

inf
γ

(∫
Ω

∫ 1

0

m

2
|γ̇(τ, ζ)|2 − V (γ(τ, ζ)) dτ dP(ζ)

)
where the infimum is over all the random curves γ : [0, 1]× Ω −→ Tn
such that

Law(γ(τ, · )) = στ .

More in general, here we fix P ∈ Rn and look at

inf
γ

(∫
Ω

∫ 1

0

m

2
|γ̇(τ, ζ)|2 − V (γ(τ, ζ))− P · γ̇(τ, ζ) dτ dP(ζ)

)
C. Villani: Optimal transport old and new, Springer (2008)



Transport maps

• Let L(x, v) = 1
2 |v|

2 − V (x)− P · v and

A0,t(γ) :=

∫ t

0

L(γ(τ), γ̇(τ))dτ

the related Lagrangian Action. Define the cost function

c0,t(x, y) := inf
γ
A0,t(γ)

for cont. piecewise C1 curves γ : [0, t]→ Tn, γ(0) = x and γ(t) = y.
• Fix σ0, σt ∈ Pac(Tn) and look for the transport map Tt (Borel map)
which is minimum for

inf
Tt

∫
Tn

c0,t(x, Tt(x))dσ0(x)

when σt = (Tt)?σ0.
P. Lee: Displacement Interpolation from a Hamiltonian point of view,

J. Funct. Anal. (2013)



The initial data for the Schrödinger dynamics

For the phase of the wave functions, fix a Lipschitz continuous weak
KAM solution of positive type for the stationary H-J equation
(A. Fathi: Weak KAM Theorem in Lagrangian Dynamics, Lecture Notes)
(P. Bernard, B. Buffoni: Weak KAM Pairs and Monge-Kantorovich

Duality, Adv. St. in Pure Math., 2007)

1

2
|P +∇xS+(x)|2 + V (x) = H̄(P ), P ∈ Rn,

where

H̄(P ) = sup
x

inf
v∈C1

1

2
|P +∇xv(x)|2 + V (x)

is the so-called effective Hamiltonian (L.C. Evans: some new PDE

methods for weak KAM theory, Calc. Var. and PDE 2003).
We assume that ϕ~ ∈ L2(Tn) is such that for some σ0 ∈ Pac(Tn),

lim
~→0+

〈ϕ~,Opw~ (φ)ϕ~〉L2 =

∫
Tn

φ(x, P +∇xS+(x))dσ0(x).



In other words, we are assuming that there exists a semiclassical measure
associated with ϕ~ taking the form

ω0(x, p) = δ(p− P −∇xS+(x))σ0(x), σ0 ∈ Pac(Tn).

In the case P ∈ `Zn, ` > 0, ~−1 ∈ `−1N and a suitable subset of the
above test functions, the typical example is given by WKB type wave
functions

ϕ~(x) = a~(x) ei(P ·x+S+(x))/~

where a~ ∈ H1(Tn;R) fulfills ‖a~‖L2 = 1, ‖~∇a~‖L2 → 0 as ~→ 0,
a2(x)dx ⇀ σ0 weakly as measures on Tn and supp(σ0) ⊆ dom(∇S+).
In the case P /∈ `Zn, another class of periodic wave function

ϕ~(x) =

∫
Tn×Rn

ϕ̃~,y,η(x) dω0(y, η)

where ϕ̃~,y,η(x) are coherent states.



The reason of this choice

The nice property

φtH(Graph(P +∇xS+)) ⊆ Graph(P +∇xS+) ∀t ≥ 0

has the following consequences

ωt := (φtH)?ω0(x, p) = δ(p−∇xS+(x))σt(x).

σ ∈ C([0, 1];P(Tn)) solves the continuity equation

∂tσt(x) + divx

( 1

m
(P +∇xS+(x))σt(x)

)
= 0

For Ψt(x) := π ◦ φtH(x, P +∇xS+(x)) the above path reads

σt = (Ψt)](σ0).



The first result

Theorem

Let ϕ~ ∈ L2(Tn) as above, ω0 ∈ P(Tn × Rn) be a linked semiclassical
measure. Let φtH : Tn × Rn → Tn × Rn be the Hamiltonian flow of
H = |p|2/2m+ V (x). Then, the ωt := (φtH)]ω0 is a semiclassical
measure associated to ψ~(t, · ) and

ωt(x, p) = δ(p− P −∇xS+(x))σt(x)

and the path (σt)0≤t≤1 ∈ P(Tn) equals for L1 - a.e. 0 ≤ t ≤ 1 a
continuous displacement interpolation between σ0 and σ1. By defining
Ψt(x) := π ◦ φtH(x, P +∇xS+(x)),∫

Tn

g(x)dσt(x) =

∫
Tn

g(Ψt(x))dσ0(x) ∀g ∈ C∞(Tn).



The complementary viewpoint

Theorem

Let σ0 ∈ Pac(Tn) and assume the uniqueness for solutions
σ ∈ C([0, 1];P(Tn)) of

∂tσt(x) + divx

( 1

m
(P +∇xS+(x))σt(x)

)
= 0.

Define the lift ωt := δ(p− P −∇xS+)σt ∈ P(Tn × Rn). Then, there
exists ϕ~ such that ω0 is the unique linked semiclassical measure. Any ωt
is a semiclassical measure linked to ψ~(t, x) := (U~(t)ϕ~)(x).

Remark 1: works for smooth S+, for example in the one-dim case.
Remark 2: several open problems: can we recover all the optimal
displacement interpolations? What are the related wave functions?
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Perspectives

Further studies of the link

Optimal paths of measures ⇐⇒ paths of semiclassical measures.

This is part of a more general Project (2016-2018) involving

Optimal transport theory

Schrödinger operators

Spectral theory

Weak solutions of the H-J equation
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