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In this course we would like to discuss spectral properties of some non
self-adjoint operators appearing in the analysis of the long time behavior
of the solutions of the time dependent Ginzburg Landau system (due to
Eliashberg-Gorkov) and then to consider the question of the global stability
of the stationary normal solutions in presence of an electric current flowing
through a two-dimensional wire.
We show that when the current is sufficiently strong the solution converges
in the long-time limit to the normal state. We provide two types of upper
bounds for the critical current where such global stability is achieved: by
using the principal eigenvalue of the magnetic Laplacian associated with the
normal magnetic field, and through the norm of the resolvent of the linearized
steady-state operator. In the latter case we estimate the resolvent norm in
large domains by the norms of approximate operators defined on the plane
and the half-plane. We also obtain a lower bound, in large domains, for the
above critical current by obtaining the current for which the normal state
looses its local stability.

The recent results presented in the course were obtained in collaboration
with Y. Almog or X. Pan. Introductory books for the time independent
problems could be the monographs of Sandier-Serfaty and Fournais-Helffer
(both in the series Progress in non linear analysis – Birkhäuser).
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