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Hardy inequalities for the Laplacian

Let Ω ⊂ Rn be a bounded domain for n ∈ N. Let 4 ≤ c(Ω) be
the smallest constant such that∫

Ω

|u(x)|2

dist(x, ∂Ω)2
dx ≤ c(Ω)

∫
Ω
|∇u(x)|2 dx,

holds for all u ∈ C∞0 (Ω), where

dist(x, ∂Ω) := inf
x∈∂Ω

‖x− y‖e.

If Ω is convex, then c(Ω) = 4.
If Ω ⊂ R2 is simply connected, then c(Ω) ≤ 16.
If Ω is a Lipschitz domain, c(Ω) <∞.
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The Heisenberg group

The first Heisenberg is is defined as R3 equipped with the group
law

(x1, x2, x3) � (y1, y2, y3)

:=
(
x1 + y1, x2 + y2, x3 + y3 − 1

2 (x1y2 − x2y1)
)
.

The left-invariant vector fields at the point x := (x1, x2, x3) ∈ H;

X1 := ∂x1 +
x2

2
∂x3 , X2 := ∂x2 −

x1

2
∂x3 , X3 := ∂x3

The only non-vanishing commutation relation is

[X1, X2] = −X3.

The sub-gradient is denoted by

∇H := (X1, X2).
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The Carnot-Carathéodory metric

We call a Lipschitz curve γ : [a, b]→ H parametrized by
γ(t) = (γ1(t), γ2(t), γ3(t)) horizontal if for all t ∈ [a, b] holds

γ′(t) = α(t)X1(γ(t)) + β(t)X2(γ(t)),

The Carnot-Carathéodory distance between x and y is then
defined as

dC(x, y) := inf
γ

∫ b

a

√
α(t)2 + β(t)2 dt

= inf
γ

∫ b

a

√
γ′1(t)2 + γ′2(t)2 dt,

where the infimum is taken over all horizontal curves γ
connecting x and y.

B. Ruszkowski Hardy inequalities on the Heisenberg group



The Hardy inequality on H
Let Ω ⊂ H be a bounded domain and 4 ≤ c(Ω) such that∫

Ω

|u(x)|2

δC(x)2
dx ≤ c(Ω)

∫
Ω
|∇H u(x)|2 dx

holds for all u ∈ C∞0 (Ω), where

δC(x) := inf
y∈∂Ω

dC(x, y).

dC(x, y) is the Carnot-Carathéodory distance between x and y.
If Ω = {x ∈ H | dC(x, 0) < r} Yang (2013) showed, that
c(Ω) = 4 for any r > 0.

If Ω has C1,1 regular boundary Danielli, Garofalo and
Phuc (2009) showed, that c(Ω) <∞.
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Results

Theorem
Let Ω ⊂ H be an open bounded convex polytope and let m ∈ N
the number of hyperplanes of ∂Ω, which are not orthogonal to
the hyperplane x3 = 0. Then holds for all u ∈ C∞0 (Ω)∫

Ω

|u(x)|2

δC(x)2
dx ≤ 5 (cm + 1)4/3

∫
Ω
|∇H u(x)|2 dx,

where

cm = m8/9π 35/2 28/3

(
1 +

1

12
√

6

)2/3

,
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Preliminaries

Lemma

Let Ω be an open bounded domain in H. Then holds∫
Ω

|u(x)|2

d1(x)2
dx ≤ 4

∫
Ω
|X1 u(x)|2 dx,∫

Ω

|u(x)|2

d2(x)2
dx ≤ 4

∫
Ω
|X2 u(x)|2 dx

for all u ∈ C∞0 (Ω), where the distances d1(x) and d2(x) are
given by

d1(x) := inf
s∈R
{|s| > 0 |x+ s(1, 0, x2/2) /∈ Ω},

d2(x) := inf
s∈R
{|s| > 0 |x+ s(0, 1,−x1/2) /∈ Ω}.
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Preliminaries

We define the Kaplan gauge for x := (x1, x2, x3) ∈ H

‖x‖4H := (x2
1 + x2

2)2 + 16x2
3 .

For all x, y ∈ H it holds
1

π
dC(x, y)2 ≤ ‖(−y) � x‖2H ≤ dC(x, y)2.

Moreover, both inequalities are sharp.

Theorem (Goldstein, Kombe (2007))

For all u ∈ C∞0 (H) holds∫
H

|u(x)|2

dC(x, 0)2
dx ≤

∫
H
|∇H u(x)|2 dx.

Immediately holds for all a ∈ H
1

π

∫
H

|u(x)|2

‖(−a) � x‖2H
dx ≤

∫
H
|∇H u(x)|2 dx.

B. Ruszkowski Hardy inequalities on the Heisenberg group



The Proof

Let Ω be a bounded convex polytope and let m ∈ N and let
a1, a2, . . . , am be the charateristic points of ∂Ω.

5

∫
Ω
|∇H u(x)|2 dx

≥
∫

Ω

 1

d1(x)2
+

1

d2(x)2
+

1

πm

m∑
j=1

1

‖(−aj) � x‖2H

|u(x)|2 dx.

Let us consider b ∈ ∂Ω such that

‖(−b) � x‖H = inf
y∈∂Ω

‖−y � x‖H.

There are two classes of hyperplanes, which are equivalent by
left-translation to each other

The hyperplane orthogonal to y3 = 0⇔ n3 = 0.
No characteristic points are contained.
The hyperplanes not orthogonal to y3 = 0⇔ n3 6= 0.
A unique characteristic point is contained.
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The Proof

For b ∈ {y ∈ H | y3 = 0} we have the lower bound

x2
1 + x2

2

4x2
3

+
1

πm

1√
(x2

1 + x2
2)2 + 16x2

3

.

Proposition

Let x ∈ H and a > 0. For the case x2
1 + x2

2 ≤ a|x3| it holds(
inf
y3=0
‖−y � x‖H

)−2

≤ 4 · 33

|x3|

(
1 +

a

48
√

6

)2

and for x2
1 + x2

2 ≥ a|x3| it holds(
inf
y3=0
‖−y � x‖H

)−2

≤ x2
1 + x2

2

4x2
3

(
48
√

6

a
+ 1

)−4/3

.
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Improved constants

Theorem
Let Ω = ω × (0, 1) such that and ω ⊂ R2 is a bounded convex
domain. For fixed a > 0 we assume that for all x ∈ Ω holds

x2
1 + x2

2 ≥ a|x3|, and x2
1 + x2

2 ≥ a| − 1 + x3|.

Then holds for all u ∈ C∞0 (Ω)(
48
√

6

a
+ 1

)−4/3 ∫
Ω

|u(x)|2

δC(x)2
dx ≤ 4

∫
Ω
|∇H u(x)|2 dx.

Example: The set Ωa := B1(pa)× (0, 1), where B1(pa) is the
two-dimensional Euclidean ball with radius one centered at
pa := (

√
a+ 1, 0).
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Thank you for the attention!
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