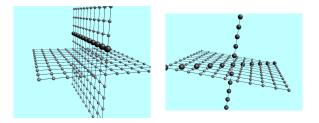
Periodic operators with defects of smaller dimensions. Spectral problem

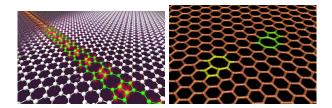
A. A. Kutsenko

Department of Mathematics, Aarhus University, Denmark

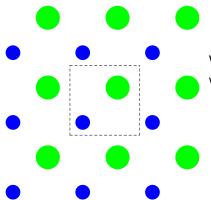
12 February 2016, Bressanone (Italy)

Example of periodic lattices with defects





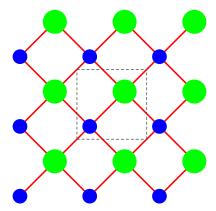
Periodic lattices



We can define N-periodic lattice with M-point unit cell as follows

$$\Gamma = [1, ..., M] \times \mathbb{Z}^N.$$

Periodic operators



Any (bounded) operator

 $\mathcal{A}:\ell^2(\Gamma)\to\ell^2(\Gamma)$

which commutes with all shift operators

$$S_{\mathbf{m}}u(j,\mathbf{n}) = u(j,\mathbf{n+m}), \ u \in \ell^2(\Gamma)$$

is called a periodic operator.

The corresponding transformation based on Fourier series

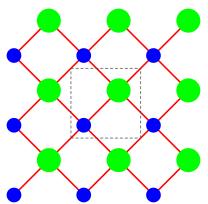
$$\mathcal{F}: \ell^2(\Gamma) \to L^2_{N,M} := L^2([0,1]^N, \mathbb{C}^M)$$

$$(\mathcal{F}u)_j(\mathbf{k}) = \sum_{\mathbf{n}\in\mathbb{Z}^N} e^{2\pi i \mathbf{k}\cdot\mathbf{n}} u(j,\mathbf{n})$$

allows us to rewrite our periodic operator ${\cal A}$ as an operator of multiplication by a matrix-valued function ${\bf A}$

$$\hat{\mathcal{A}} := \mathcal{F}\mathcal{A}\mathcal{F}^{-1} : L^2_{N,M} \to L^2_{N,M}, \quad \hat{\mathcal{A}}\mathbf{u} = \mathbf{A}\mathbf{u}.$$

Periodic operators after F-F-B transformation



A periodic operator $\ensuremath{\mathcal{A}}$ unitarily equivalent to the following operator

$$\hat{\mathcal{A}}: L^2_{N,M} \to L^2_{N,M},$$

$$\hat{\mathcal{A}}\mathbf{u}(\mathbf{k}) = \mathbf{A}_0(\mathbf{k})\mathbf{u}(\mathbf{k})$$

with some (usually continuous) $M \times M$ matrix-valued function $\mathbf{A}_0(\mathbf{k})$ depending on the "quasimomentum" $\mathbf{k} \in [0, 1]^N$. For the operator of multiplication by the matrix-valued function

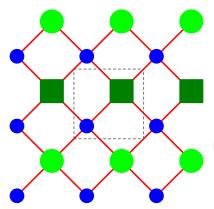
 $\hat{\mathcal{A}}\mathbf{u}(\mathbf{k}) = \mathbf{A}_0(\mathbf{k})\mathbf{u}(\mathbf{k})$

the spectrum is just eigenvalues of this matrix for different quasi-momentums

$$\sigma(\hat{\mathcal{A}}) = \{\lambda : \det(\mathbf{A}_0(\mathbf{k}) - \lambda \mathbf{I}) = 0 \text{ for some } \mathbf{k}\} =$$

$$\bigcup_{j=1}^{M} \bigcup_{\mathbf{k} \in [0,1]^{N}} \{\lambda_{j}(\mathbf{k})\}.$$

Periodic operators with linear defects (N = 2)



In this case our periodic operator

$$\hat{\mathcal{A}}: L^2_{N,M} \to L^2_{N,M}$$

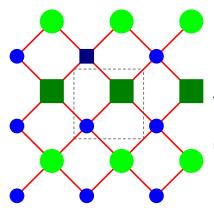
takes the form

$$\hat{\mathcal{A}} \mathbf{u} = \mathbf{A}_0 \mathbf{u} + \mathbf{A}_1 \langle \mathbf{B}_1 \mathbf{u}
angle_1$$

with some (usually continuous) matrix-valued functions **A**, **B** and

$$\langle \cdot \rangle_1 := \int_0^1 \cdot dk_1.$$

Periodic operators with linear and point defects (N = 2)



In this case our periodic operator

$$\hat{\mathcal{A}}: L^2_{N,M} \to L^2_{N,M}$$

takes the form

$$\hat{\mathcal{A}} \mathbf{u} = \mathbf{A}_0 \mathbf{u} {+} \mathbf{A}_1 \langle \mathbf{B}_1 \mathbf{u}
angle_1 {+} \mathbf{A}_2 \langle \mathbf{B}_2 \mathbf{u}
angle_2$$

with some (usually continuous) matrix-valued functions **A**, **B** and

$$\langle \cdot \rangle_2 := \int_0^1 \int_0^1 \cdot dk_1 dk_2.$$

Periodic operator with defects (general case)

In general, a periodic operator with defects is unitarily equivalent to the operator $\hat{\mathcal{A}} : L^2_{N,M} \to L^2_{N,M}$ of the form

$$\hat{\mathcal{A}}\mathbf{u} = \mathbf{A}_0\mathbf{u} + \mathbf{A}_1\langle \mathbf{B}_1\mathbf{u}\rangle_1 + ... + \mathbf{A}_N\langle \mathbf{B}_N\mathbf{u}\rangle_N.$$

with continuous matrix-valued functions A, B and

$$\langle \cdot \rangle_1 = \int_0^1 \cdot dk_1, \ \ \langle \cdot \rangle_{j+1} = \int_0^1 \langle \cdot \rangle_j dk_{j+1}.$$

Remark. The spectrum of this operator is

 $\sigma(\mathcal{A}) = \{\lambda : \mathcal{A} - \lambda \mathcal{I} \text{ is non - invertible}\} = \{\lambda : \widetilde{\mathcal{A}} \text{ is non - invertible}\},\$

where $\widetilde{\mathcal{A}}$ has the same form as \mathcal{A} but with $\mathbf{A}_0 - \lambda \mathbf{I}$ instead of \mathbf{A}_0 .

Test for invertibility of a periodic operator with defects

Theorem (J. Math. Anal. Appl., 2015)

Step 0. Define $\pi_0 = \det E_0$, $E_0 = A_0$.

If $\pi_0(\mathbf{k}^0) = 0$ for some $\mathbf{k}^0 \in [0, 1]^N$ then \mathcal{A} is non-invertible else define $\mathbf{A}_{j0} = \mathbf{A}_0^{-1}\mathbf{A}_j, \ j = 1, ..., N.$

Step 1. Define $\pi_1 = \det \mathbf{E}_1$, $\mathbf{E}_1 = \mathbf{I} + \langle \mathbf{B}_1 \mathbf{A}_{10} \rangle_1$.

If $\pi_1(\mathbf{k}_1^0) = 0$ for some $\mathbf{k}_1^0 \in [0, 1]^{N-1}$ then \mathcal{A} is non-invertible else define $\mathbf{A}_{j1} = \mathbf{A}_{j0} - \mathbf{A}_{10}\mathbf{E}_1^{-1} \langle \mathbf{B}_1\mathbf{A}_{j0} \rangle_1, \quad j = 2, ..., N.$

Step 2. Define $\pi_2 = \det \mathbf{E}_2$, $\mathbf{E}_2 = \mathbf{I} + \langle \mathbf{B}_2 \mathbf{A}_{21} \rangle_2$.

If $\pi_2(\mathbf{k}_2^0) = 0$ for some $\mathbf{k}_2^0 \in [0, 1]^{N-2}$ then \mathcal{A} is non-invertible else define $\mathbf{A}_{j2} = \mathbf{A}_{j1} - \mathbf{A}_{21}\mathbf{E}_2^{-1} \langle \mathbf{B}_2\mathbf{A}_{j1} \rangle_2, \quad j = 3, ..., N.$

<u>Step N.</u> Define $\pi_N = \det \mathbf{E}_N$, $\mathbf{E}_N = \mathbf{I} + \langle \mathbf{B}_N \mathbf{A}_{N,N-1} \rangle_N$. If $\pi_N = 0$ then \mathcal{A} is non-invertible else \mathcal{A} is invertible.

Determinants in the case of embedded defects

In this case the operator has a form

$$\mathcal{A} \cdot = \mathbf{A}_0 \cdot + \mathbf{A}_1 \langle \cdot \rangle_1 + \dots + \mathbf{A}_N \langle \cdot \rangle_N,$$

where \mathbf{A}_n does not depend on $k_1, ..., k_n$. Define the matrix-valued integral continued fractions

$$\mathbf{C}_0 = \mathbf{A}_0, \quad \mathbf{C}_1 = \mathbf{A}_1 + \left\langle \frac{\mathbf{I}}{\mathbf{A}_0} \right\rangle_1^{-1}, \quad \mathbf{C}_2 = \mathbf{A}_2 + \left\langle \frac{\mathbf{I}}{\mathbf{A}_1 + \left\langle \frac{\mathbf{I}}{\mathbf{A}_0} \right\rangle_1^{-1}} \right\rangle_2^{-1}$$

and so on $\mathbf{C}_j = \mathbf{A}_j + \langle \mathbf{C}_{j-1}^{-1} \rangle_j^{-1}$. Then

$$\pi_j(\mathcal{A}) = \det(\langle \mathbf{C}_{j-1}^{-1} \rangle_j \mathbf{C}_j).$$

Note that if all \mathbf{A}_j are self-adjoint then \mathcal{A} is self-adjoint and all \mathbf{C}_j are self-adjoint. arxiv.org, 2015

The spectrum of $\mathcal A$ has the form

$$\sigma(\mathcal{A}) = \bigcup_{n=0}^{N} \sigma_n, \quad \sigma_n = \{\lambda : \ \widetilde{\pi}_n = 0 \ \text{for some } \mathbf{k}\},\$$

where
$$\widetilde{\pi}_n \equiv \pi_n(\mathcal{A} - \lambda \mathcal{I}) \equiv \pi_n(\lambda, k_{n+1}, ..., k_N).$$

The component σ_0 coincides with the spectrum of purely periodic operator $\mathbf{A}_0 \mathbf{u}$ without defects. All components σ_n , n < N are continuous, the component σ_N is discrete. Also note that σ_n does not depend on the defects of dimensions

greater than n, i.e. of A_{n+1} , B_{n+1} , A_{n+2} , B_{n+2} and so on.

Determinants of periodic operators with defects

For all continuous matrix-valued functions **A**, **B** on $[0, 1]^N$ of appropriate sizes introduce

 $\mathfrak{H} = \{ \mathcal{A} : \mathcal{A} = \mathbf{A}_0 \cdot + \mathbf{A}_1 \langle \mathbf{B}_1 \cdot \rangle_1 + \ldots + \mathbf{A}_N \langle \mathbf{B}_N \cdot \rangle_N \} \subset \mathcal{B}(L^2_{N,M}),$

$$\mathfrak{G} = \{ \mathcal{A} \in \mathfrak{H} : \mathcal{A} \text{ is invertible} \}.$$

Theorem (arxiv.org, 2015)

The set \mathfrak{H} is a non-closed operator algebra. The subset \mathfrak{G} is a group. The mapping

$$\boldsymbol{\pi}(\mathcal{A}) := (\pi_0(\mathcal{A}), ..., \pi_N(\mathcal{A}))$$

is a group homomorphism between \mathfrak{G} and $\mathcal{C}_0 \times \mathcal{C}_1 \times \ldots \times \mathcal{C}_N$, where \mathcal{C}_n is a group of non-zero continuous functions depending on $(k_{n+1}, \ldots, k_N) \in [0, 1]^{N-n}$.

Traces of periodic operators with defects

Define

$$au(\mathcal{A}) = \lim_{t o 0} rac{\pi(\mathcal{I} + t\mathcal{A}) - \pi(\mathcal{I})}{t}$$

Then

Theorem (arxiv.org, 2015)

The following identities are fulfilled

$$oldsymbol{ au}(\mathcal{A}) = (\operatorname{Tr} \mathbf{A}_0, \langle \operatorname{Tr} \mathbf{B}_1 \mathbf{A}_1 \rangle_1, ..., \langle \operatorname{Tr} \mathbf{B}_N \mathbf{A}_N \rangle_N),$$

 $oldsymbol{ au}(lpha \mathcal{A} + eta \mathcal{B}) = lpha oldsymbol{ au}(\mathcal{A}) + eta oldsymbol{ au}(\mathcal{B}), \quad oldsymbol{ au}(\mathcal{A} \circ \mathcal{B}) = oldsymbol{ au}(\mathcal{B} \circ \mathcal{A}),$
 $oldsymbol{\pi}(e^{\mathcal{A}}) = e^{oldsymbol{ au}(\mathcal{A})}, \quad oldsymbol{\pi}(\mathcal{A} \circ \mathcal{B}) = oldsymbol{\pi}(\mathcal{A}) oldsymbol{\pi}(\mathcal{B}).$

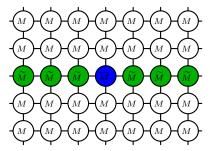
Example. Uniform lattice with guide and single defect.

Wave equation has the form ($\lambda = \omega^2$ is an energy)

$$-(\Delta_{\text{disc}})u(x,y) = \lambda \begin{cases} \overline{M}u(x,y), & x = y = 0, \\ \widetilde{M}u(x,y), & x = 0, \ y \neq 0, \\ Mu(x,y), & otherwise \end{cases} \quad u \in \ell^2(\mathbb{Z}^2)$$

After applying Floquet-Bloch transformation it becomes

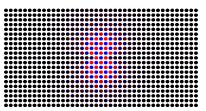
Example. Uniform lattice with guide and single defect.



For the random uniform distribution of the masses of the media, of the guide, and of the point defect (< M) the probability of existence of the isolated eigenvalue is exactly

$$\frac{3}{4}-\frac{1}{2\pi}.$$

Comput. Mech., 2014



Wave propagation in the lattice with defects and sources

Wave equation

$$\Delta_{\mathrm{discr}} U_{\mathsf{n}}(t) = S_{\mathsf{n}}^{2} \ddot{U}_{\mathsf{n}}(t) + \sum_{\mathsf{n}' \in \mathcal{N}_{\mathrm{F}}} F_{\mathsf{n}'}(t) \delta_{\mathsf{n}\mathsf{n}'}, \ \mathsf{n} \in \mathbb{Z}^{2}$$

Assuming harmonic sources and applying F-B transformation we obtain

$$A\mathbf{v} = -\omega^2 \mathbf{a}^* \mathbf{S} \langle \mathbf{v} \mathbf{a} \rangle + \mathbf{b}^* \mathbf{f}.$$

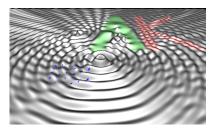
Using determinants we may derive explicit solution of the last equation

$$\mathbf{v} = \mathbf{A}^{-1} \left(-\omega^2 \mathbf{a}^* \mathbf{SG} \left\langle \frac{\mathbf{a} \mathbf{b}^*}{\mathbf{A}} \right\rangle + \mathbf{b}^* \right) \mathbf{f},$$

where

$$\mathbf{G} = (\mathbf{I} + \omega^2 \mathbf{A} \mathbf{S})^{-1}, \ \mathbf{A} = \left\langle \frac{\mathbf{a} \mathbf{a}^*}{A} \right\rangle.$$

Wave simulations. Inverse problem.



Two formulas allows us to recover the defect properties from the information about amplitudes of waves at the receivers

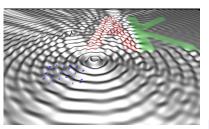
$$\mathbf{S}\langle u\mathbf{a}\rangle = \omega^{-2}\mathbf{C}^{-1}\left(\left\langle \frac{\mathbf{c}\mathbf{b}^*}{A}\right\rangle \mathbf{f} - \langle u\mathbf{c}\rangle\right),\,$$

$$\langle u\mathbf{a} \rangle = -\mathbf{A}\mathbf{C}^{-1}\left(\left\langle \frac{\mathbf{c}\mathbf{b}^*}{A} \right\rangle \mathbf{f} - \langle u\mathbf{c} \rangle \right) + \left\langle \frac{\mathbf{a}\mathbf{b}^*}{A} \right\rangle \mathbf{f},$$

where

$$\mathbf{c} = \begin{pmatrix} e^{-i\mathbf{n}_{1}\cdot\mathbf{k}} \\ \dots \\ e^{-i\mathbf{n}_{N}\cdot\mathbf{k}} \end{pmatrix}_{\mathbf{n}_{j}\in\mathcal{N}_{\mathrm{R}}}, \quad \mathbf{C} = \left\langle \frac{\mathbf{c}\mathbf{a}^{*}}{A} \right\rangle.$$

Eur. J. Mech. A-Solid., 2015



Cloaking device.

