Periodic operators with defects of smaller dimensions. Spectral problem

A. A. Kutsenko
Department of Mathematics, Aarhus University, Denmark
12 February 2016, Bressanone (Italy)

Example of periodic lattices with defects

Periodic lattices

We can define N-periodic lattice with M-point unit cell as follows

$$
\Gamma=[1, \ldots, M] \times \mathbb{Z}^{N}
$$

Any (bounded) operator

$$
\mathcal{A}: \ell^{2}(\Gamma) \rightarrow \ell^{2}(\Gamma)
$$

which commutes with all shift operators
$\mathcal{S}_{\mathbf{m}} u(j, \mathbf{n})=u(j, \mathbf{n}+\mathbf{m}), u \in \ell^{2}(\Gamma)$
is called a periodic operator.

The corresponding transformation based on Fourier series

$$
\begin{gathered}
\mathcal{F}: \ell^{2}(\Gamma) \rightarrow L_{N, M}^{2}:=L^{2}\left([0,1]^{N}, \mathbb{C}^{M}\right) \\
(\mathcal{F} u)_{j}(\mathbf{k})=\sum_{\mathbf{n} \in \mathbb{Z}^{N}} e^{2 \pi i \mathbf{k} \cdot \mathbf{n}} u(j, \mathbf{n})
\end{gathered}
$$

allows us to rewrite our periodic operator \mathcal{A} as an operator of multiplication by a matrix-valued function \mathbf{A}

$$
\hat{\mathcal{A}}:=\mathcal{F} \mathcal{A} \mathcal{F}^{-1}: L_{N, M}^{2} \rightarrow L_{N, M}^{2}, \quad \hat{\mathcal{A}} \mathbf{u}=\mathbf{A} \mathbf{u} .
$$

A periodic operator \mathcal{A} unitarily equivalent to the following operator

$$
\begin{aligned}
& \hat{\mathcal{A}}: L_{N, M}^{2} \rightarrow L_{N, M}^{2} \\
& \hat{\mathcal{A}} \mathbf{u}(\mathbf{k})=\mathbf{A}_{0}(\mathbf{k}) \mathbf{u}(\mathbf{k})
\end{aligned}
$$

with some (usually continuous) $M \times M$ matrix-valued function $\mathbf{A}_{0}(\mathbf{k})$ depending on the "quasimomentum" $\mathbf{k} \in[0,1]^{N}$.

Spectrum of periodic operators

For the operator of multiplication by the matrix-valued function

$$
\hat{\mathcal{A}} \mathbf{u}(\mathbf{k})=\mathbf{A}_{0}(\mathbf{k}) \mathbf{u}(\mathbf{k})
$$

the spectrum is just eigenvalues of this matrix for different quasi-momentums

$$
\sigma(\hat{\mathcal{A}})=\left\{\lambda: \operatorname{det}\left(\mathbf{A}_{0}(\mathbf{k})-\lambda \mathbf{I}\right)=0 \text { for some } \mathbf{k}\right\}=
$$

$$
\bigcup_{j=1}^{M} \bigcup_{\mathbf{k} \in[0,1]^{N}}\left\{\lambda_{j}(\mathbf{k})\right\}
$$

Periodic operators with linear defects $(N=2)$

In this case our periodic operator

$$
\hat{\mathcal{A}}: L_{N, M}^{2} \rightarrow L_{N, M}^{2}
$$

takes the form

$$
\hat{\mathcal{A}} \mathbf{u}=\mathbf{A}_{0} \mathbf{u}+\mathbf{A}_{1}\left\langle\mathbf{B}_{1} \mathbf{u}\right\rangle_{1}
$$

with some (usually continuous) matrix-valued functions A, B and

$$
\langle\cdot\rangle_{1}:=\int_{0}^{1} \cdot d k_{1}
$$

In this case our periodic operator

$$
\hat{\mathcal{A}}: L_{N, M}^{2} \rightarrow L_{N, M}^{2}
$$

takes the form
$\hat{\mathcal{A}} \mathbf{u}=\mathbf{A}_{0} \mathbf{u}+\mathbf{A}_{1}\left\langle\mathbf{B}_{1} \mathbf{u}\right\rangle_{1}+\mathbf{A}_{2}\left\langle\mathbf{B}_{2} \mathbf{u}\right\rangle_{2}$
with some (usually continuous) matrix-valued functions A, B and

$$
\langle\cdot\rangle_{2}:=\int_{0}^{1} \int_{0}^{1} \cdot d k_{1} d k_{2}
$$

Periodic operator with defects (general case)

In general, a periodic operator with defects is unitarily equivalent to the operator $\hat{\mathcal{A}}: L_{N, M}^{2} \rightarrow L_{N, M}^{2}$ of the form

$$
\hat{\mathcal{A}} \mathbf{u}=\mathbf{A}_{0} \mathbf{u}+\mathbf{A}_{1}\left\langle\mathbf{B}_{1} \mathbf{u}\right\rangle_{1}+\ldots+\mathbf{A}_{N}\left\langle\mathbf{B}_{N} \mathbf{u}\right\rangle_{N}
$$

with continuous matrix-valued functions \mathbf{A}, \mathbf{B} and

$$
\langle\cdot\rangle_{1}=\int_{0}^{1} \cdot d k_{1}, \quad\langle\cdot\rangle_{j+1}=\int_{0}^{1}\langle\cdot\rangle_{j} d k_{j+1}
$$

Remark. The spectrum of this operator is

$$
\sigma(\mathcal{A})=\{\lambda: \mathcal{A}-\lambda \mathcal{I} \text { is non }- \text { invertible }\}=\{\lambda: \widetilde{\mathcal{A}} \text { is non }- \text { invertible }\},
$$

where $\widetilde{\mathcal{A}}$ has the same form as \mathcal{A} but with $\mathbf{A}_{0}-\lambda \mathbf{I}$ instead of \mathbf{A}_{0}.

Test for invertibility of a periodic operator with defects

Theorem (J. Math. Anal. Appl., 2015)

Step 0. Define $\pi_{0}=\operatorname{det} \mathbf{E}_{0}, \quad \mathbf{E}_{0}=\mathbf{A}_{0}$.
If $\pi_{0}\left(\mathbf{k}^{0}\right)=0$ for some $\mathbf{k}^{0} \in[0,1]^{N}$ then \mathcal{A} is non-invertible else define $\mathbf{A}_{j 0}=\mathbf{A}_{0}^{-1} \mathbf{A}_{j}, \quad j=1, \ldots, N$.

Step 1. Define $\pi_{1}=\operatorname{det} \mathbf{E}_{1}, \quad \mathbf{E}_{1}=\mathbf{I}+\left\langle\mathbf{B}_{1} \mathbf{A}_{10}\right\rangle_{1}$.
If $\pi_{1}\left(\mathbf{k}_{1}^{0}\right)=0$ for some $\mathbf{k}_{1}^{0} \in[0,1]^{N-1}$ then \mathcal{A} is non-invertible else define $\mathbf{A}_{j 1}=\mathbf{A}_{j 0}-\mathbf{A}_{10} \mathbf{E}_{1}^{-1}\left\langle\mathbf{B}_{1} \mathbf{A}_{j 0}\right\rangle_{1}, \quad j=2, \ldots, N$.

Step 2. Define $\pi_{2}=\operatorname{det} \mathbf{E}_{2}, \quad \mathbf{E}_{2}=\mathbf{I}+\left\langle\mathbf{B}_{2} \mathbf{A}_{21}\right\rangle_{2}$.

$$
\begin{aligned}
& \text { If } \pi_{2}\left(\mathbf{k}_{2}^{0}\right)=0 \text { for some } \mathbf{k}_{2}^{0} \in[0,1]^{N-2} \text { then } \mathcal{A} \text { is non-invertible else define } \\
& \mathbf{A}_{j 2}=\mathbf{A}_{j 1}-\mathbf{A}_{21} \mathbf{E}_{2}^{-1}\left\langle\mathbf{B}_{2} \mathbf{A}_{j 1}\right\rangle_{2}, \quad j=3, \ldots, N \text {. }
\end{aligned}
$$

$* * * * * * * * *$

Step N. Define $\pi_{N}=\operatorname{det} \mathbf{E}_{N}, \quad \mathbf{E}_{N}=\mathbf{I}+\left\langle\mathbf{B}_{N} \mathbf{A}_{N, N-1}\right\rangle_{N}$. If $\pi_{N}=0$ then \mathcal{A} is non-invertible else \mathcal{A} is invertible.

Determinants in the case of embedded defects

In this case the operator has a form

$$
\mathcal{A} \cdot=\mathbf{A}_{0} \cdot+\mathbf{A}_{1}\langle\cdot\rangle_{1}+\ldots+\mathbf{A}_{N}\langle\cdot\rangle_{N}
$$

where \mathbf{A}_{n} does not depend on k_{1}, \ldots, k_{n}.
Define the matrix-valued integral continued fractions

$$
\mathbf{C}_{0}=\mathbf{A}_{0}, \quad \mathbf{C}_{1}=\mathbf{A}_{1}+\left\langle\frac{\mathbf{I}}{\mathbf{A}_{0}}\right\rangle_{1}^{-1}, \quad \mathbf{C}_{2}=\mathbf{A}_{2}+\left\langle\frac{\mathbf{I}}{\mathbf{A}_{1}+\left\langle\frac{1}{\mathbf{A}_{0}}\right\rangle_{1}^{-1}}\right\rangle_{2}^{-1}
$$

and so on $\mathbf{C}_{j}=\mathbf{A}_{j}+\left\langle\mathbf{C}_{j-1}^{-1}\right\rangle_{j}^{-1}$. Then

$$
\pi_{j}(\mathcal{A})=\operatorname{det}\left(\left\langle\mathbf{C}_{j-1}^{-1}\right\rangle_{j} \mathbf{C}_{j}\right)
$$

Note that if all \mathbf{A}_{j} are self-adjoint then \mathcal{A} is self-adjoint and all \mathbf{C}_{j} are self-adjoint. arxiv.org, 2015

Spectrum of periodic operators with defects

The spectrum of \mathcal{A} has the form

$$
\begin{array}{r}
\sigma(\mathcal{A})=\bigcup_{n=0}^{N} \sigma_{n}, \quad \sigma_{n}=\left\{\lambda: \widetilde{\pi}_{n}=0 \text { for some } \mathbf{k}\right\} \\
\text { where } \quad \widetilde{\pi}_{n} \equiv \pi_{n}(\mathcal{A}-\lambda \mathcal{I}) \equiv \pi_{n}\left(\lambda, k_{n+1}, \ldots, k_{N}\right) .
\end{array}
$$

The component σ_{0} coincides with the spectrum of purely periodic operator $\mathbf{A}_{0} \mathbf{u}$ without defects. All components $\sigma_{n}, n<N$ are continuous, the component σ_{N} is discrete. Also note that σ_{n} does not depend on the defects of dimensions greater than n, i.e. of $\mathbf{A}_{n+1}, \mathbf{B}_{n+1}, \mathbf{A}_{n+2}, \mathbf{B}_{n+2}$ and so on.

Determinants of periodic operators with defects

For all continuous matrix-valued functions \mathbf{A}, \mathbf{B} on $[0,1]^{N}$ of appropriate sizes introduce

$$
\begin{gathered}
\mathfrak{H}=\left\{\mathcal{A}: \mathcal{A}=\mathbf{A}_{0} \cdot+\mathbf{A}_{1}\left\langle\mathbf{B}_{1} \cdot\right\rangle_{1}+\ldots+\mathbf{A}_{N}\left\langle\mathbf{B}_{N} \cdot\right\rangle_{N}\right\} \subset \mathcal{B}\left(L_{N, M}^{2}\right), \\
\mathfrak{G}=\{\mathcal{A} \in \mathfrak{H}: \mathcal{A} \text { is invertible }\} .
\end{gathered}
$$

Theorem (arxiv.org, 2015)

The set \mathfrak{H} is a non-closed operator algebra. The subset \mathfrak{G} is a group. The mapping

$$
\pi(\mathcal{A}):=\left(\pi_{0}(\mathcal{A}), \ldots, \pi_{N}(\mathcal{A})\right)
$$

is a group homomorphism between \mathfrak{G} and $\mathcal{C}_{0} \times \mathcal{C}_{1} \times \ldots \times \mathcal{C}_{N}$, where \mathcal{C}_{n} is a group of non-zero continuous functions depending on $\left(k_{n+1}, \ldots, k_{N}\right) \in[0,1]^{N-n}$.

Traces of periodic operators with defects

Define

$$
\tau(\mathcal{A})=\lim _{t \rightarrow 0} \frac{\pi(\mathcal{I}+t \mathcal{A})-\pi(\mathcal{I})}{t}
$$

Then

Theorem (arxiv.org, 2015)

The following identities are fulfilled

$$
\begin{gathered}
\boldsymbol{\tau}(\mathcal{A})=\left(\operatorname{Tr} \mathbf{A}_{0},\left\langle\operatorname{Tr} \mathbf{B}_{1} \mathbf{A}_{1}\right\rangle_{1}, \ldots,\left\langle\operatorname{Tr} \mathbf{B}_{N} \mathbf{A}_{N}\right\rangle_{N}\right) \\
\boldsymbol{\tau}(\alpha \mathcal{A}+\beta \mathcal{B})=\alpha \boldsymbol{\tau}(\mathcal{A})+\beta \boldsymbol{\tau}(\mathcal{B}), \quad \boldsymbol{\tau}(\mathcal{A} \circ \mathcal{B})=\boldsymbol{\tau}(\mathcal{B} \circ \mathcal{A}), \\
\boldsymbol{\pi}\left(e^{\mathcal{A}}\right)=e^{\boldsymbol{\tau}(\mathcal{A})}, \quad \boldsymbol{\pi}(\mathcal{A} \circ \mathcal{B})=\boldsymbol{\pi}(\mathcal{A}) \boldsymbol{\pi}(\mathcal{B}) .
\end{gathered}
$$

Example. Uniform lattice with guide and single defect.

Wave equation has the form ($\lambda=\omega^{2}$ is an energy)

$$
-\left(\Delta_{\mathrm{disc}}\right) u(x, y)=\lambda \begin{cases}\bar{M} u(x, y), & x=y=0, \\ \widetilde{M} u(x, y), & x=0, \quad y \neq 0, \quad u \in \ell^{2}\left(\mathbb{Z}^{2}\right) \\ M u(x, y), & \text { otherwise }\end{cases}
$$

After applying Floquet-Bloch transformation it becomes
$4\left(\sin ^{2} \pi k_{1}+\sin ^{2} \pi k_{2}\right) \hat{u}=\lambda M \hat{u}+\lambda(\widetilde{M}-M) \int_{0}^{1} \hat{u} d k_{1}+\lambda(\bar{M}-\widetilde{M}) \int_{0}^{1} \int_{0}^{1} \hat{u} d k_{1} d k_{2}$

For the random uniform distribution of the masses of the media, of the guide, and of the point defect $(<M)$ the probability of existence of the isolated eigenvalue is exactly

$$
\frac{3}{4}-\frac{1}{2 \pi} .
$$

Comput. Mech., 2014

Wave propagation in the lattice with defects and sources

Wave equation

$$
\Delta_{\text {discr }} U_{\mathbf{n}}(t)=S_{\mathbf{n}}^{2} \ddot{U}_{\mathbf{n}}(t)+\sum_{\mathbf{n}^{\prime} \in \mathcal{N}_{\mathbf{F}}} F_{\mathbf{n}^{\prime}}(t) \delta_{\mathbf{n} \mathbf{n}^{\prime}}, \quad \mathbf{n} \in \mathbb{Z}^{2}
$$

Assuming harmonic sources and applying F-B transformation we obtain

$$
A v=-\omega^{2} \mathbf{a}^{*} \mathbf{S}\langle v \mathbf{a}\rangle+\mathbf{b}^{*} \mathbf{f}
$$

Using determinants we may derive explicit solution of the last equation

$$
v=A^{-1}\left(-\omega^{2} \mathbf{a}^{*} \mathbf{S G}\left\langle\frac{\mathbf{a b}^{*}}{A}\right\rangle+\mathbf{b}^{*}\right) \mathbf{f}
$$

where

$$
\mathbf{G}=\left(\mathbf{I}+\omega^{2} \mathbf{A S}\right)^{-1}, \quad \mathbf{A}=\left\langle\frac{\mathbf{a a}^{*}}{A}\right\rangle
$$

Two formulas allows us to recover the defect properties from the information about amplitudes of waves at the receivers

$$
\begin{aligned}
& \mathbf{S}\langle u \mathbf{a}\rangle=\omega^{-2} \mathbf{C}^{-1}\left(\left\langle\frac{\mathbf{c b}^{*}}{A}\right\rangle \mathbf{f}-\langle u \mathbf{c}\rangle\right) \\
& \langle\boldsymbol{u} \mathbf{a}\rangle=-\mathbf{A C}^{-1}\left(\left\langle\frac{\mathbf{c b}^{*}}{A}\right\rangle \mathbf{f}-\langle u \mathbf{c}\rangle\right)+\left\langle\frac{\mathbf{a b}^{*}}{A}\right\rangle \mathbf{f}
\end{aligned}
$$

 where

$$
\mathbf{c}=\left(\begin{array}{c}
e^{-i \mathbf{n}_{1} \cdot \mathbf{k}} \\
\ldots \\
e^{-i \mathbf{i n}_{N} \cdot \mathbf{k}}
\end{array}\right)_{\mathbf{n}_{j} \in \mathcal{N}_{\mathrm{R}}} \quad, \quad \mathbf{C}=\left\langle\frac{\mathbf{c a}^{*}}{A}\right\rangle .
$$

Eur. J. Mech. A-Solid., 2015

Cloaking device.

