On the bound states of Schrödinger operators with δ-interactions on conical surfaces

Thomas Ourmières-Bonafos
Joint work with Vladimir Lotoreichik (NPI, Rez)

BCAM - Basque Center for Applied Mathematics

Bressanone, Conference MCQM 12-th February 2016

(1) Motivations and state of the art

2 Description of the problem and main result
(3) Proof
(1) Motivations and state of the art

2 Description of the problem and main result
(3) Proof

Problem

Let $d \geq 3$ and $\theta \in(0, \pi / 2)$. We define $\mathcal{C}_{d, \theta}$, the cone with "circular" cross-section by:

$$
\mathcal{C}_{d, \theta}:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: x_{d}=\cot \theta \sqrt{\sum_{j=1}^{d-1} x_{j}^{2}}\right\}
$$

Figure: The cone $\mathcal{C}_{d, \theta}$ in dimension $d=3$.
We are interested in the self-adjoint operator $H_{\alpha, \mathcal{C}_{d, \theta}}$ acting on $L^{2}\left(\mathbb{R}^{d}\right)$ which formally writes:

$$
H_{\alpha, \mathcal{C}_{d, \theta}}=-\Delta-\alpha \underset{215}{ }\left(x-\mathcal{C}_{d, \theta}\right), \quad \alpha>0 .
$$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\operatorname{dis}}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

For $E>0$, we define the counting function:

$$
\mathcal{N}_{-\alpha^{2} / 4-E}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\#\left\{\lambda \in \sigma_{\mathrm{dis}}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right): \lambda<-\alpha^{2} / 4-E\right\}
$$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

For $E>0$, we define the counting function:

$$
\mathcal{N}_{-\alpha^{2} / 4-E}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\#\left\{\lambda \in \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right): \lambda<-\alpha^{2} / 4-E\right\}=0
$$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

For $E>0$, we define the counting function:

$$
\mathcal{N}_{-\alpha^{2} / 4-E}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\#\left\{\lambda \in \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right): \lambda<-\alpha^{2} / 4-E\right\}=1
$$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]
In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\operatorname{dis}}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

For $E>0$, we define the counting function:

$$
\mathcal{N}_{-\alpha^{2} / 4-E}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\#\left\{\lambda \in \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right): \lambda<-\alpha^{2} / 4-E\right\}=2
$$

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

In dimension $d=3$, we have:
i) $\sigma_{\text {ess }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\left[-\alpha^{2} / 4,+\infty\right)$,
ii) $\# \sigma_{\mathrm{dis}}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\infty$

For $E>0$, we define the counting function:

$$
\mathcal{N}_{-\alpha^{2} / 4-E}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)=\#\left\{\lambda \in \sigma_{\text {dis }}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right): \lambda<-\alpha^{2} / 4-E\right\}=2
$$

Goals:

- For $d=3$: behaviour of $\mathcal{N}_{-\alpha^{2} / 4-E}\left(H_{\alpha, \mathcal{C}_{d, \theta}}\right)$ when $E \rightarrow 0$.
- Structure of the spectrum in $d \geq 4$.

Laplacians and conical structures

Conical Layers:

P. Exner, M. Tater

Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A (2010)
M. Dauge, T. O.-B., N. Raymond

Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Comm. Pure and Applied Ana. (2015)

Laplacians and conical structures

Conical Layers:

P. Exner, M. Tater

Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A (2010)
M. Dauge, T. O.-B., N. Raymond

Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Comm. Pure and Applied Ana. (2015)

Robin Laplacian:

V. Bruneau, N. PopoffOn the negative spectrum of the Robin Laplacian in corner domains. Preprint ArXiv (2015)K. Pankrashkin

On the discrete spectrum of Robin Laplacians in conical domains. To appear Math. Model. Nat. Phenom. (2016)

Laplacians and conical structures

Conical Layers：

P．Exner，M．Tater
Spectrum of Dirichlet Laplacian in a conical layer．J．Phys．A（2010）
M．Dauge，T．O．－B．，N．Raymond
Spectral asymptotics of the Dirichlet Laplacian in a conical layer．Comm．Pure and Applied Ana．（2015）

Robin Laplacian：

显
V．Bruneau，N．Popoff
On the negative spectrum of the Robin Laplacian in corner domains．Preprint ArXiv （2015）K．Pankrashkin
On the discrete spectrum of Robin Laplacians in conical domains．To appear Math． Model．Nat．Phenom．（2016）

Magnetic Laplacian：

\square V．Bonaillie－NoËl，M．Dauge，N．Popoff，N．Raymond
Magnetic Laplacian in sharp three－dimensional cones．Operator Theory Advances and Application（Birkhäuser）：Proceedings of the Conference Spectral Theory and Mathematical Physics，Santiago 2014

(4) Motivations and state of the art

2 Description of the problem and main result

Definition of the δ-interaction

Let $d \geq 3, \alpha>0$ and $\theta \in(0, \pi / 2)$. We define the quadratic form

$$
Q_{\alpha, \mathcal{C}_{d, \theta}}[u]=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}-\alpha\|u\|_{L^{2}\left(\mathcal{C}_{d, \theta}\right)}^{2}, \quad \operatorname{dom}\left(Q_{\alpha, \mathcal{C}_{d, \theta}}\right)=H^{1}\left(\mathbb{R}^{d}\right) .
$$

Definition of the δ-interaction

Let $d \geq 3, \alpha>0$ and $\theta \in(0, \pi / 2)$. We define the quadratic form

$$
Q_{\alpha, \mathcal{C}_{d, \theta}}[u]=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}-\alpha\|u\|_{L^{2}\left(\mathcal{C}_{d, \theta}\right)}^{2}, \quad \operatorname{dom}\left(Q_{\alpha, \mathcal{C}_{d, \theta}}\right)=H^{1}\left(\mathbb{R}^{d}\right) .
$$

Proposition [BEHRNDT, EXNER, LOTOREICHIK (14)]

The quadratic form $Q_{\alpha, \mathcal{C}_{d, \theta}}$ is closed and semi-bounded on $L^{2}\left(\mathbb{R}^{d}\right)$. Therefore, we denote $\mathrm{H}_{\alpha, \mathcal{C}_{d, \theta}}$ the associated self-adjoint operator given by its Friedrichs extension.

Definition of the δ-interaction

Let $d \geq 3, \alpha>0$ and $\theta \in(0, \pi / 2)$. We define the quadratic form

$$
Q_{\alpha, \mathcal{C}_{d, \theta}}[u]=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}-\alpha\|u\|_{L^{2}\left(\mathcal{C}_{d, \theta}\right)}^{2}, \quad \operatorname{dom}\left(Q_{\alpha, \mathcal{C}_{d, \theta}}\right)=H^{1}\left(\mathbb{R}^{d}\right) .
$$

Proposition [BEHRNDT, EXNER, LOTOREICHIK (14)]

The quadratic form $Q_{\alpha, \mathcal{C}_{d, \theta}}$ is closed and semi-bounded on $L^{2}\left(\mathbb{R}^{d}\right)$. Therefore, we denote $\mathrm{H}_{\alpha, \mathcal{C}_{d, \theta}}$ the associated self-adjoint operator given by its Friedrichs extension.

Reduction to $\alpha=1$ Let $u \in \operatorname{dom}\left(Q_{\alpha, \mathcal{C}_{d, \theta}}\right)$, we define $\hat{x}=\alpha^{-1} x$. As $\mathcal{C}_{d, \theta}$ is dilatation invariant we get:

$$
\frac{Q_{\alpha, \mathcal{C}_{d, \theta}}}{\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}}=\alpha^{2} \frac{Q_{1, \mathcal{C}_{d, \theta}}[\hat{u}]}{\|\hat{u}\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}} .
$$

Definition of the δ-interaction

Let $d \geq 3, \alpha>0$ and $\theta \in(0, \pi / 2)$. We define the quadratic form

$$
Q_{\alpha, \mathcal{C}_{d, \theta}}[u]=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}-\alpha\|u\|_{L^{2}\left(\mathcal{C}_{d, \theta}\right)}^{2}, \quad \operatorname{dom}\left(Q_{\alpha, \mathcal{C}_{d, \theta}}\right)=H^{1}\left(\mathbb{R}^{d}\right)
$$

Proposition [BEHRNDT, EXNER, LOTOREICHIK (14)]

The quadratic form $Q_{\alpha, \mathcal{C}_{d, \theta}}$ is closed and semi-bounded on $L^{2}\left(\mathbb{R}^{d}\right)$. Therefore, we denote $\mathrm{H}_{\alpha, \mathcal{C}_{d, \theta}}$ the associated self-adjoint operator given by its Friedrichs extension.

Reduction to $\alpha=1$ Let $u \in \operatorname{dom}\left(Q_{\alpha, \mathcal{C}_{d, \theta}}\right)$, we define $\hat{x}=\alpha^{-1} x$. As $\mathcal{C}_{d, \theta}$ is dilatation invariant we get:

$$
\frac{Q_{\alpha, \mathcal{C}_{d, \theta}}[u]}{\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}}=\alpha^{2} \frac{Q_{1, \mathcal{C}_{d, \theta}}[\hat{u}]}{\|\hat{u}\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}} .
$$

From now on, we drop the index 1: $Q_{1, \mathcal{C}_{d, \theta}}=Q_{\mathcal{C}_{d, \theta}}$ and $\mathrm{H}_{1, \mathcal{C}_{d, \theta}}=\mathrm{H}_{\mathcal{C}_{d, \theta}}$.

Main result

Theorem [Lotoreichik, O.-B. (15)]

Let $\theta \in(0, \pi / 2)$.
i) In dimension $d \geq 3, \sigma_{\text {ess }}\left(\mathrm{H}_{\mathcal{C}_{d, \theta}}\right)=[-1 / 4,+\infty)$.
ii) In dimension $d=3$, we have

$$
\mathcal{N}_{-1 / 4-E}\left(\mathrm{H}_{\mathcal{C}_{d, \theta}}\right) \sim \frac{\cot \theta}{4 \pi}|\ln E|, \quad E \rightarrow 0 .
$$

iii) In dimension $d \geq 4, \sigma_{\text {dis }}\left(\mathrm{H}_{\mathcal{C}_{d, \theta}}\right)=\emptyset$.

(hyper-)cylindrical coordinates

Let $(r, z, \phi) \in \mathbb{R}_{+} \times \mathbb{R} \times \mathbb{S}^{d-2}$ be the cylindrical coordinates, for all $k \in\{1, \ldots, d-2\}$:
$x_{k}=r\left(\prod_{p=1}^{k-1} \sin \phi_{p}\right) \cos \phi_{k}, \quad x_{d-1}=r \prod_{p=1}^{d-2} \sin \phi_{p}, \quad x_{d}=z$.

(hyper-)cylindrical coordinates

Let $(r, z, \phi) \in \mathbb{R}_{+} \times \mathbb{R} \times \mathbb{S}^{d-2}$ be the cylindrical coordinates, for all $k \in\{1, \ldots, d-2\}$:

$$
x_{k}=r\left(\prod_{p=1}^{k-1} \sin \phi_{p}\right) \cos \phi_{k}, \quad x_{d-1}=r \prod_{p=1}^{d-2} \sin \phi_{p}, \quad x_{d}=z .
$$

\mathbb{R}^{d} becomes $\mathbb{R}_{+}^{2} \times \mathbb{S}^{d-2} . \mathcal{C}_{d, \theta}$ becomes $\Gamma_{\theta} \times \mathbb{S}^{d-2}$:

(hyper-)cylindrical coordinates

Let $(r, z, \phi) \in \mathbb{R}_{+} \times \mathbb{R} \times \mathbb{S}^{d-2}$ be the cylindrical coordinates, for all $k \in\{1, \ldots, d-2\}$:

$$
x_{k}=r\left(\prod_{p=1}^{k-1} \sin \phi_{p}\right) \cos \phi_{k}, \quad x_{d-1}=r \prod_{p=1}^{d-2} \sin \phi_{p}, \quad x_{d}=z .
$$

\mathbb{R}^{d} becomes $\mathbb{R}_{+}^{2} \times \mathbb{S}^{d-2} \cdot \mathcal{C}_{d, \theta}$ becomes $\Gamma_{\theta} \times \mathbb{S}^{d-2}$:

The quadratic form $Q_{\mathcal{C}_{d, \theta}}$ is expressed as

$$
\begin{aligned}
Q_{\mathcal{C}_{d, \theta}}[u]= & \int_{\mathbb{R}_{+}^{2} \times \mathbb{S}^{d-2}}\left(\left|\partial_{r} u\right|^{2}+\left|\partial_{z} u\right|^{2}+r^{-2}\left\|\nabla_{\mathbb{S}^{d-2}} u\right\|^{2}\right) r^{d-2} \mathrm{~d} r \mathrm{~d} z \mathrm{dm}_{d-2}(\phi) \\
& -\int_{\Gamma_{\theta} \times \mathbb{S}^{d-2}}|u(s, \phi)|^{2} \mathrm{~d} \gamma_{\theta}(s) \mathrm{dm}_{d-2}(\phi) .
\end{aligned}
$$

Fiber decomposition

Decomposing into spherical harmonics, we get the family of quadratic forms:

$$
\begin{aligned}
Q_{\Gamma_{\theta}}^{[I]}[u]= & \int_{\mathbb{R}_{+}^{2}}\left(\left|\partial_{r} u\right|^{2}+\left|\partial_{z} u\right|^{2}+\frac{I(I+d-3)}{r^{2}}|u|^{2}\right) r^{d-2} \mathrm{~d} r \mathrm{~d} z \\
& -\int_{\mathbb{R}_{+}}|u(s \sin \theta, s \cos \theta)|^{2}(s \sin \theta)^{d-2} \mathrm{~d} s .
\end{aligned}
$$

Fiber decomposition

Decomposing into spherical harmonics, we get the family of quadratic forms:

$$
\begin{aligned}
Q_{\Gamma_{\theta}}^{[I]}[u]= & \int_{\mathbb{R}_{+}^{2}}\left(\left|\partial_{r} u\right|^{2}+\left|\partial_{z} u\right|^{2}+\frac{I(I+d-3)}{r^{2}}|u|^{2}\right) r^{d-2} \mathrm{~d} r \mathrm{~d} z \\
& -\int_{\mathbb{R}_{+}}|u(s \sin \theta, s \cos \theta)|^{2}(s \sin \theta)^{d-2} \mathrm{~d} s .
\end{aligned}
$$

The quadratic forms do not depend on k and their domains are:

$$
\operatorname{dom}\left(Q_{\Gamma_{\theta}}^{[/]}\right)= \begin{cases}\left\{u: u, \partial_{r} u, \partial_{z} u \in L^{2}\left(\mathbb{R}_{+}^{2}, r^{d-2} \mathrm{~d} r \mathrm{~d} z\right)\right\}, & I=0, \\ \left\{u: u, \partial_{r} u, \partial_{z} u, r^{-1} u \in L^{2}\left(\mathbb{R}_{+}^{2}, r^{d-2} \mathrm{~d} r \mathrm{~d} z\right)\right\}, & I>0 .\end{cases}
$$

Fiber decomposition

Decomposing into spherical harmonics, we get the family of quadratic forms:

$$
\begin{aligned}
Q_{\Gamma_{\theta}}^{[I]}[u]= & \int_{\mathbb{R}_{+}^{2}}\left(\left|\partial_{r} u\right|^{2}+\left|\partial_{z} u\right|^{2}+\frac{I(I+d-3)}{r^{2}}|u|^{2}\right) r^{d-2} \mathrm{~d} r \mathrm{~d} z \\
& -\int_{\mathbb{R}_{+}}|u(s \sin \theta, s \cos \theta)|^{2}(s \sin \theta)^{d-2} \mathrm{~d} s
\end{aligned}
$$

The quadratic forms do not depend on k and their domains are:

$$
\operatorname{dom}\left(Q_{\Gamma_{\theta}}^{[/]}\right)= \begin{cases}\left\{u: u, \partial_{r} u, \partial_{z} u \in L^{2}\left(\mathbb{R}_{+}^{2}, r^{d-2} \mathrm{~d} r \mathrm{~d} z\right)\right\}, & I=0, \\ \left\{u: u, \partial_{r} u, \partial_{z} u, r^{-1} u \in L^{2}\left(\mathbb{R}_{+}^{2}, r^{d-2} \mathrm{~d} r \mathrm{~d} z\right)\right\}, & I>0 .\end{cases}
$$

Remark:
If $(I, d)=(I, 3)$ and $I>0$ then for all $u \in \operatorname{dom}\left(Q_{\Gamma_{\theta}}^{[/]}\right), u(0, z)=0$.
(4) Motivations and state of the art

2 Description of the problem and main result
(3) Proof

Flat metric

Proposition [LOTOREICHIK,O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}$ such that $(d, I) \neq(3,0)$. Then $Q_{\Gamma_{\theta}}^{[I]}$ is unitarily equivalent to the quadratic form

$$
\int_{\mathbb{R}_{+}^{2}}\left|\partial_{r} \tilde{u}\right|^{2}+\left|\partial_{z} \tilde{u}\right|^{2}+\frac{\gamma(d, l)}{r^{2}}|\tilde{u}|^{2} \mathrm{~d} r \mathrm{~d} z-\int_{\mathbb{R}_{+}}|\tilde{u}(s \sin \theta, s \cos \theta)|^{2} \mathrm{~d} s
$$

$$
\text { with } \gamma(d, I)=I(I+d-3)+(1 / 4)(d-2)(d-4) \text { and } \tilde{u} \in H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right) \text {, }
$$

Flat metric

Proposition [LOTOREICHIK,O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}$ such that $(d, I) \neq(3,0)$. Then $Q_{\Gamma_{\theta}}^{[I]}$ is unitarily equivalent to the quadratic form

$$
\int_{\mathbb{R}_{+}^{2}}\left|\partial_{r} \tilde{u}\right|^{2}+\left|\partial_{z} \tilde{u}\right|^{2}+\frac{\gamma(d, l)}{r^{2}}|\tilde{u}|^{2} \mathrm{~d} r \mathrm{~d} z-\int_{\mathbb{R}_{+}}|\tilde{u}(s \sin \theta, s \cos \theta)|^{2} \mathrm{~d} s
$$

with $\gamma(d, I)=I(I+d-3)+(1 / 4)(d-2)(d-4)$ and $\tilde{u} \in H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right)$,
Proof: Let $(d, I) \neq(3,0)$: For $u \in \operatorname{dom}\left(Q_{\Gamma_{\theta}}^{[/]}\right)$, we let $\tilde{u}=r^{(d-2) / 2} u$.

Flat metric

Proposition [Lotoreichik, O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}$ such that $(d, I) \neq(3,0)$. Then $Q_{\Gamma_{\theta}}^{[I]}$ is unitarily equivalent to the quadratic form

$$
\int_{\mathbb{R}_{+}^{2}}\left|\partial_{r} \tilde{u}\right|^{2}+\left|\partial_{z} \tilde{u}\right|^{2}+\frac{\gamma(d, l)}{r^{2}}|\tilde{u}|^{2} \mathrm{~d} r d z-\int_{\mathbb{R}_{+}}|\tilde{u}(s \sin \theta, s \cos \theta)|^{2} \mathrm{~d} s
$$

with $\gamma(d, I)=I(I+d-3)+(1 / 4)(d-2)(d-4)$ and $\tilde{u} \in H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right)$,
Proof: Let $(d, l) \neq(3,0)$: For $u \in \operatorname{dom}\left(Q_{\Gamma_{\theta}}^{[]}\right)$, we let $\tilde{u}=r^{(d-2) / 2} u$. We look at $Q_{\Gamma_{\theta}}^{[1]}\left[r^{-(d-2) / 2} \tilde{u}\right]$. Integrating by parts we get:

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}}\left|\partial_{r}\left(r^{-(d-2) / 2} \tilde{u}\right)\right|^{2} r^{d-2} \mathrm{~d} r=\int_{\mathbb{R}_{+}}\left|\partial_{r} \tilde{u}\right|^{2} \mathrm{~d} r+\int_{\mathbb{R}_{+}} \frac{\tilde{\gamma}(d)}{4 r^{2}}|\tilde{u}|^{2} \mathrm{~d} r \\
&+\frac{d-2}{2} \lim _{r \rightarrow 0}\left(r^{(d-3)}|u|^{2}\right) .
\end{aligned}
$$

Flat metric

Proposition [Lotoreichik, O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}$ such that $(d, I) \neq(3,0)$. Then $Q_{\Gamma_{\theta}}^{[I]}$ is unitarily equivalent to the quadratic form

$$
\int_{\mathbb{R}_{+}^{2}}\left|\partial_{r} \tilde{u}\right|^{2}+\left|\partial_{z} \tilde{u}\right|^{2}+\frac{\gamma(d, l)}{r^{2}}|\tilde{u}|^{2} \mathrm{~d} r \mathrm{~d} z-\int_{\mathbb{R}_{+}}|\tilde{u}(s \sin \theta, s \cos \theta)|^{2} \mathrm{~d} s
$$

with $\gamma(d, I)=I(I+d-3)+(1 / 4)(d-2)(d-4)$ and $\tilde{u} \in H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right)$,
Proof: Let $(d, I) \neq(3,0)$: For $u \in \operatorname{dom}\left(Q_{\Gamma_{\theta}}^{[I]}\right)$, we let $\tilde{u}=r^{(d-2) / 2} u$. We look at $Q_{\Gamma_{\theta}}^{[1]}\left[r^{-(d-2) / 2} \tilde{u}\right]$. Integrating by parts we get:

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}}\left|\partial_{r}\left(r^{-(d-2) / 2} \tilde{u}\right)\right|^{2} r^{d-2} \mathrm{~d} r=\int_{\mathbb{R}_{+}}\left|\partial_{r} \tilde{u}\right|^{2} \mathrm{~d} r+\int_{\mathbb{R}_{+}} \frac{\tilde{\gamma}(d)}{4 r^{2}}|\tilde{u}|^{2} \mathrm{~d} r \\
&+\frac{d-2}{2} \underbrace{\lim _{r \rightarrow 0}\left(|u|^{2}\right)}_{\substack{=0 \\
d \rightarrow 0}}
\end{aligned}
$$

Flat metric

Proposition [Lotoreichik, O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}$ such that $(d, I) \neq(3,0)$. Then $Q_{\Gamma_{\theta}}^{[I]}$ is unitarily equivalent to the quadratic form

$$
\int_{\mathbb{R}_{+}^{2}}\left|\partial_{r} \tilde{u}\right|^{2}+\left|\partial_{z} \tilde{u}\right|^{2}+\frac{\gamma(d, l)}{r^{2}}|\tilde{u}|^{2} \mathrm{~d} r d z-\int_{\mathbb{R}_{+}}|\tilde{u}(s \sin \theta, s \cos \theta)|^{2} \mathrm{~d} s
$$

with $\gamma(d, I)=I(I+d-3)+(1 / 4)(d-2)(d-4)$ and $\tilde{u} \in H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right)$,
Proof: Let $(d, I) \neq(3,0)$: For $u \in \operatorname{dom}\left(Q_{\Gamma_{\theta}}^{[]}\right)$, we let $\tilde{u}=r^{(d-2) / 2} u$. We look at $Q_{\Gamma_{\theta}}^{[1]}\left[r^{-(d-2) / 2} \tilde{u}\right]$. Integrating by parts we get:

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}}\left|\partial_{r}\left(r^{-(d-2) / 2} \tilde{u}\right)\right|^{2} r^{d-2} \mathrm{~d} r=\int_{\mathbb{R}_{+}}\left|\partial_{r} \tilde{u}\right|^{2} \mathrm{~d} r+\int_{\mathbb{R}_{+}} \frac{\tilde{\gamma}(d)}{4 r^{2}}|\tilde{u}|^{2} \mathrm{~d} r \\
&+\frac{d-2}{2} \underbrace{\lim _{r \rightarrow 0}\left(r^{(d-3)}|u|^{2}\right)}_{\overline{\bar{N}}^{2} 0} .
\end{aligned}
$$

Reduction to $(d, I)=(3,0)$

Proposition [LOTOREICHIK,O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}^{*}$. $Q_{\Gamma_{\theta}}^{[]}$can generate discrete spectrum only if $(d, I)=(3,0)$.

Reduction to $(d, I)=(3,0)$

Proposition [LOTOREICHIK,O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}^{*}$. $Q_{\Gamma_{\theta}}^{[]}$can generate discrete spectrum only if $(d, I)=(3,0)$.

Proof: When $(d, I) \neq(3,0), \gamma(d, I)>0$.

Reduction to $(d, I)=(3,0)$

Proposition [LOTOREICHIK,O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}^{*}$. $Q_{\Gamma_{\theta}}^{[]]}$can generate discrete spectrum only if $(d, I)=(3,0)$.

Proof: When $(d, l) \neq(3,0), \gamma(d, l)>0$. For $\tilde{u} \in H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right)$

$$
Q_{\Gamma_{\theta}}^{[1]}\left[r^{-(d-2) / 2} \tilde{u}\right] \geq\|\nabla \tilde{u}\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)}^{2}-\|\tilde{u}\|_{L^{2}\left(\Gamma_{\theta}\right)}^{2}
$$

Reduction to $(d, I)=(3,0)$

Proposition [LOTOREICHIK,O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}^{*}$. $Q_{\Gamma_{\theta}}^{[/]}$can generate discrete spectrum only if $(d, I)=(3,0)$.

Proof: When $(d, l) \neq(3,0), \gamma(d, I)>0$. For $\tilde{u} \in H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right)$

$$
\begin{aligned}
Q_{\Gamma_{\theta}}^{[1]}\left[r^{-(d-2) / 2} \tilde{u}\right] & \geq\|\nabla \tilde{u}\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)}^{2}-\|\tilde{u}\|_{L^{2}\left(\Gamma_{\theta}\right)}^{2} \\
& =\left\|\nabla \tilde{u}_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}-\left\|\tilde{u}_{0}\right\|_{L^{2}(\Gamma)}^{2}, \quad \tilde{u}_{0} \in H^{1}\left(\mathbb{R}^{2}\right) .
\end{aligned}
$$

Reduction to $(d, /)=(3,0)$

Proposition [LOTOREICHIK,O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}^{*}$. $Q_{\Gamma_{\theta}}^{[]}$can generate discrete spectrum only if $(d, I)=(3,0)$.

Proof: When $(d, I) \neq(3,0), \gamma(d, I)>0$. For $\tilde{u} \in H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right)$

$$
\begin{aligned}
Q_{\Gamma_{\theta}}^{[1]}\left[r^{-(d-2) / 2} \tilde{u}\right] & \geq\|\nabla \tilde{u}\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)}^{2}-\|\tilde{u}\|_{L^{2}\left(\Gamma_{\theta}\right)}^{2} \\
& =\left\|\nabla \tilde{u}_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}-\left\|\tilde{u}_{0}\right\|_{L^{2}(\Gamma)}^{2}, \quad \tilde{u}_{0} \in H^{1}\left(\mathbb{R}^{2}\right) . \\
& \geq-(1 / 4)\left\|\tilde{u}_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=-(1 / 4)\|\tilde{u}\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)}^{2} .
\end{aligned}
$$

Reduction to $(d, /)=(3,0)$

Proposition [LOTOREICHIK,O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}^{*}$. $Q_{\Gamma_{\theta}}^{[]}$can generate discrete spectrum only if $(d, I)=(3,0)$.

Proof: When $(d, I) \neq(3,0), \gamma(d, l)>0$. For $\tilde{u} \in H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right)$

$$
\begin{aligned}
Q_{\Gamma_{\theta}}^{[1]}\left[r^{-(d-2) / 2} \tilde{u}\right] & \geq\|\nabla \tilde{u}\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)}^{2}-\|\tilde{u}\|_{L^{2}\left(\Gamma_{\theta}\right)}^{2} \\
& =\left\|\nabla \tilde{u}_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}-\left\|\tilde{u}_{0}\right\|_{L^{2}(\Gamma)}^{2}, \quad \tilde{u}_{0} \in H^{1}\left(\mathbb{R}^{2}\right) . \\
& \geq-(1 / 4)\left\|\tilde{u}_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=-(1 / 4)\|\tilde{u}\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)}^{2} .
\end{aligned}
$$

Thanks to the min-max principle: $\inf \sigma\left(Q_{\Gamma_{\theta}}^{[/]}\right) \geq-(1 / 4)$.

Reduction to $(d, l)=(3,0)$

Proposition [LOTOREICHIK,O.-B. (15)]

Let $d \geq 3$ and $I \in \mathbb{N}^{*}$. $Q_{\Gamma_{\theta}}^{[/]}$can generate discrete spectrum only if $(d, I)=(3,0)$.

Proof: When $(d, l) \neq(3,0), \gamma(d, l)>0$. For $\tilde{u} \in H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right)$

$$
\begin{aligned}
Q_{\Gamma_{\theta}}^{[1]}\left[r^{-(d-2) / 2} \tilde{u}\right] & \geq\|\nabla \tilde{u}\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)}^{2}-\|\tilde{u}\|_{L^{2}\left(\Gamma_{\theta}\right)}^{2} \\
& =\left\|\nabla \tilde{u}_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}-\left\|\tilde{u}_{0}\right\|_{L^{2}(\Gamma)}^{2}, \quad \tilde{u}_{0} \in H^{1}\left(\mathbb{R}^{2}\right) . \\
& \geq-(1 / 4)\left\|\tilde{u}_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=-(1 / 4)\|\tilde{u}\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)}^{2} .
\end{aligned}
$$

Thanks to the min-max principle: $\inf \sigma\left(Q_{\Gamma_{\theta}}^{[/]}\right) \geq-(1 / 4)$.
Consequence: We focus only on $(d, I)=(3,0)$ to prove the accumulation of the eigenvalues.

Asymptotics of the counting function

In these variables the quadratic form reads:

$$
\begin{aligned}
Q_{\Omega_{\theta}}[u]= & \int_{\Omega_{\theta}}\left(\left|\partial_{s} u\right|^{2}+\left|\partial_{t} u\right|^{2}\right)(s \sin \theta+t \cos \theta) \mathrm{d} s \mathrm{~d} t \\
& -\int_{s>0}|u(s, 0)|^{2} s \sin \theta \mathrm{~d} s
\end{aligned}
$$

Asymptotics of the counting function

In these variables the quadratic form reads:

$$
\begin{aligned}
Q_{\Omega_{\theta}}[u]= & \int_{\Omega_{\theta}}\left(\left|\partial_{s} u\right|^{2}+\left|\partial_{t} u\right|^{2}\right)(s \sin \theta+t \cos \theta) \mathrm{d} s \mathrm{~d} t \\
& -\int_{s>0}|u(s, 0)|^{2} s \sin \theta \mathrm{~d} s
\end{aligned}
$$

Asymptotics of the counting function

In these variables the quadratic form reads:

$$
\begin{aligned}
Q_{\Omega_{\theta}}[u]= & \int_{\Omega_{\theta}}\left(\left|\partial_{s} u\right|^{2}+\left|\partial_{t} u\right|^{2}\right)(s \sin \theta+t \cos \theta) \mathrm{d} s \mathrm{~d} t \\
& -\int_{s>0}|u(s, 0)|^{2} s \sin \theta \mathrm{~d} s
\end{aligned}
$$

Now, we bound $Q_{\Omega_{\theta}}$ by two quadratic forms using Dirichlet and Neumann bracketing:

$$
Q_{B(E)}^{N} \leq Q_{\Omega_{\theta}} \leq Q_{\mathrm{Hst}(E)}^{\mathrm{D}}
$$

Where, $Q_{B(E)}^{N}$ and $Q_{H s t(E)}^{\mathrm{D}}$ are tensored quadratic forms.

Asymptotics of the counting function

In these variables the quadratic form reads:

$$
\begin{aligned}
Q_{\Omega_{\theta}}[u]= & \int_{\Omega_{\theta}}\left(\left|\partial_{s} u\right|^{2}+\left|\partial_{t} u\right|^{2}\right)(s \sin \theta+t \cos \theta) \mathrm{d} s \mathrm{~d} t \\
& -\int_{s>0}|u(s, 0)|^{2} s \sin \theta \mathrm{~d} s
\end{aligned}
$$

Now, we bound $Q_{\Omega_{\theta}}$ by two quadratic forms using Dirichlet and Neumann bracketing:

$$
Q_{B(E)}^{N} \leq Q_{\Omega_{\theta}} \leq Q_{\mathrm{Hst}(E)}^{\mathrm{D}}
$$

Where, $Q_{B(E)}^{N}$ and $Q_{H s t(E)}^{D}$ are tensored quadratic forms. It yields

$$
\mathcal{N}_{-1 / 4-E}\left(Q_{H \mathrm{Ht}(E)}^{\mathrm{D}}\right) \leq \mathcal{N}_{-1 / 4-E}\left(Q_{\Omega_{\theta}}\right) \leq \mathcal{N}_{-1 / 4-E}\left(Q_{B(E)}^{\mathrm{N}}\right)
$$

Lower bound on the counting function

Lower bound on the counting function

For $u \in \operatorname{dom}\left(Q_{\Omega_{\theta}}\right)$ such that $u=0$ on $\Omega_{\theta} \backslash \operatorname{Hst}(E)$ we define

$$
\tilde{Q}_{\mathrm{Hst}(\mathrm{E})}^{\mathrm{D}}[u]=Q_{\Omega_{\theta}}[u] .
$$

We get the form ordering:

$$
Q_{\Omega_{\theta}} \leq \tilde{Q}_{\mathrm{Hst}(\mathrm{E})}^{\mathrm{D}} \equiv \hat{Q}_{\mathrm{Hst}(\mathrm{E})}^{\mathrm{D})}
$$

where $\hat{Q}_{\mathrm{Hst}(\mathrm{E})}^{\mathrm{D}}$ is the expression of $\tilde{Q}_{\mathrm{Hst}}^{\mathrm{D}}$, in the flat metric.

Lower bound on the counting function

$$
Q_{\Omega_{\theta}} \leq \hat{Q}_{\mathrm{Hst}(E)}^{\mathrm{D}}, Q_{\mathrm{Hst}(E)}^{\mathrm{D}},
$$

where $Q_{\mathrm{Hst}(E)}^{\mathrm{D}}$ quadratic form of a tensored operator on $L^{2}(\operatorname{Hst}(E))$ of the shape:

$$
-\partial_{t}^{2}-\delta_{t=0}-\partial_{s}^{2}-\frac{1}{4 s^{2} \sin \theta}
$$

Lower bound on the counting function

We get the final form ordering

$$
Q_{\Omega_{\theta}} \leq \hat{Q}_{\mathrm{Hst}(E)}^{\mathrm{D}}, Q_{\mathrm{Hst}(E)}^{\mathrm{D}},
$$

where $Q_{\operatorname{Hst}(E)}^{\mathrm{D}}$ quadratic form of a tensored operator on $L^{2}(\operatorname{Hst}(E))$ of the shape:

$$
\underbrace{-\partial_{t}^{2}-\delta_{t=0}}_{\lambda_{1}(E)>1 / 4}-\partial_{s}^{2}-\frac{1}{4 s^{2} \sin \theta}
$$

Lower bound on the counting function

Finally we have:

$$
\mathcal{N}_{-1 / 4-E-\lambda_{1}(E)}\left(-\partial_{s}^{2}-\frac{1}{4 s^{2} \sin \theta}\right) \leq \mathcal{N}_{-1 / 4-E}\left(Q_{\Omega_{\theta}}\right)
$$

We choose $M>0$ such that $1 / 4+E+\lambda_{1}(E)=\mathcal{O}(E|\ln E|)$.

- P. Exner, K. Yoshitomi

Asymptotics of eigenvalues of the Schrödinger operator with strong δ-interaction on a loop. J. Geom. Phys. (2002)

Lower bound on the counting function

Finally we have:

$$
\mathcal{N}_{-1 / 4-E-\lambda_{1}(E)}\left(-\partial_{s}^{2}-\frac{1}{4 s^{2} \sin \theta}\right) \leq \mathcal{N}_{-1 / 4-E}\left(Q_{\Omega_{\theta}}\right)
$$

We choose $M>0$ such that $1 / 4+E+\lambda_{1}(E)=\mathcal{O}(E|\ln E|)$.

Corrections to the classical behavior of the number of bound states of Schrödinger operators. Ann. Phys. (1988)

Eskerrik asko zure arretagatik !

Thank you for your attention!

