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Motivations and state of the art Description of the problem and main result Proof

Problem

Let d ≥ 3 and θ ∈ (0, π/2). We define Cd,θ, the cone with ”circular”
cross-section by:

Cd,θ := {(x1, . . . , xd ) ∈ Rd : xd = cot θ

√√√√d−1∑
j=1

x2
j }

Cd,θ
θ

x3

x2
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Figure: The cone Cd,θ in dimension d = 3.

We are interested in the self-adjoint operator Hα,Cd,θ acting on L2(Rd )
which formally writes:

Hα,Cd,θ = −∆− αδ(x − Cd,θ), α > 0.
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Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

In dimension d = 3, we have:
i) σess(Hα,Cd,θ ) = [−α2/4,+∞),
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Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

In dimension d = 3, we have:
i) σess(Hα,Cd,θ ) = [−α2/4,+∞),
ii) #σdis(Hα,Cd,θ ) =∞

R−α2/4
[× × ××××××|

E

For E > 0, we define the counting function:

N−α2/4−E (Hα,Cd,θ ) = #{λ ∈ σdis(Hα,Cd,θ ) : λ < −α2/4− E} = 2�� ��Goals:
For d = 3: behaviour of N−α2/4−E (Hα,Cd,θ ) when E → 0.
Structure of the spectrum in d ≥ 4.
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Definition of the δ-interaction
Let d ≥ 3, α > 0 and θ ∈ (0, π/2). We define the quadratic form

Qα,Cd,θ [u] = ‖∇u‖2
L2(Rd ) − α‖u‖

2
L2(Cd,θ), dom(Qα,Cd,θ ) = H1(Rd ).
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Qα,Cd,θ [u]

‖u‖2
L2(Rd )

= α2 Q1,Cd,θ [û]

‖û‖2
L2(Rd )

.

From now on, we drop the index 1: Q1,Cd,θ = QCd,θ and H1,Cd,θ = HCd,θ .
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Main result

Theorem [LOTOREICHIK,O.-B. (15)]

Let θ ∈ (0, π/2).
i) In dimension d ≥ 3, σess(HCd,θ ) = [−1/4,+∞).
ii) In dimension d = 3, we have

N−1/4−E (HCd,θ ) ∼ cot θ
4π
| ln E |, E → 0.

iii) In dimension d ≥ 4, σdis(HCd,θ ) = ∅.
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(hyper-)cylindrical coordinates
Let (r , z, φ) ∈ R+ × R × Sd−2 be the cylindrical coordinates, for all
k ∈ {1, . . . ,d − 2}:

xk = r

k−1∏
p=1

sinφp

 cosφk , xd−1 = r
d−2∏
p=1

sinφp, xd = z.
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The quadratic form QCd,θ is expressed as

QCd,θ [u] =

∫
R2

+×Sd−2
(|∂r u|2 + |∂zu|2 + r−2‖∇Sd−2u‖2)rd−2drdzdmd−2(φ)

−
∫

Γθ×Sd−2
|u(s, φ)|2dγθ(s)dmd−2(φ).
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Fiber decomposition
Decomposing into spherical harmonics, we get the family of quadratic
forms:

Q[l]
Γθ

[u] =

∫
R2

+

(|∂r u|2 + |∂zu|2 +
l(l + d − 3)

r2 |u|2)rd−2drdz

−
∫
R+

|u(s sin θ, s cos θ)|2(s sin θ)d−2ds.
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Flat metric
Proposition [LOTOREICHIK,O.-B. (15)]

Let d ≥ 3 and l ∈ N such that (d , l) 6= (3,0). Then Q[l]
Γθ

is unitarily
equivalent to the quadratic form∫

R2
+

|∂r ũ|2 + |∂z ũ|2 +
γ(d , l)

r2 |ũ|2drdz −
∫
R+
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with γ(d , l) = l(l + d − 3) + (1/4)(d − 2)(d − 4) and ũ ∈ H1
0 (R2
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|ũ(s sin θ, s cos θ)|2ds,

with γ(d , l) = l(l + d − 3) + (1/4)(d − 2)(d − 4) and ũ ∈ H1
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L2(Γθ), ũ0 ∈ H1(R2).

12/15



Motivations and state of the art Description of the problem and main result Proof

Reduction to (d , l) = (3,0)

Proposition [LOTOREICHIK,O.-B. (15)]

Let d ≥ 3 and l ∈ N∗. Q[l]
Γθ

can generate discrete spectrum only if
(d , l) = (3,0).�� ��Proof: When (d , l) 6= (3,0), γ(d , l) > 0. For ũ ∈ H1

0 (R2
+)

Q[l]
Γθ

[r−(d−2)/2ũ] ≥ ‖∇ũ‖2
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0 (R2
+)

Q[l]
Γθ

[r−(d−2)/2ũ] ≥ ‖∇ũ‖2
L2(R2

+) − ‖ũ‖
2
L2(Γθ), ũ0 ∈ H1(R2).

= ‖∇ũ0‖2
L2(R2) − ‖ũ0‖2

L2(Γ), ũ0 ∈ H1(R2).

≥ −(1/4)‖ũ0‖2
L2(R2) = −(1/4)‖ũ‖2

L2(R2
+).
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Asymptotics of the counting function

θ
s

t

s sin θ + t cos θ = 0

0
•

In these variables the quadratic form
reads:

QΩθ
[u] =

∫
Ωθ

(|∂su|2 + |∂t u|2)(s sin θ + t cos θ)dsdt

−
∫

s>0
|u(s, 0)|2s sin θds
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Now, we bound QΩθ by two quadratic forms using Dirichlet and Neu-
mann bracketing:

QN
B(E) ≤ QΩθ ≤ QD

Hst(E)

Where, QN
B(E) and QD

Hst(E) are tensored quadratic forms.
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mann bracketing:

QN
B(E) ≤ QΩθ ≤ QD

Hst(E)

Where, QN
B(E) and QD

Hst(E) are tensored quadratic forms. It yields

N−1/4−E (QD
Hst(E)) ≤ N−1/4−E (QΩθ ) ≤ N−1/4−E (QN

B(E))
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Lower bound on the counting function

θ

Hst(E)

s sin θ + t cos θ = 0 s sin θ + t cos θ = 1

0
• •

(sin θ)−1 + M| ln E |

For u ∈ dom(QΩθ ) such that u = 0 on Ωθ \ Hst(E) we define

Q̃D
Hst(E)[u] = QΩθ [u].

We get the form ordering:

QΩθ ≤ Q̃D
Hst(E) ≡ Q̂D

Hst(E),

where Q̂D
Hst(E) is the expression of Q̃D

Hst(E) in the flat metric.
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We get the final form ordering

QΩθ ≤ Q̂D
Hst(E) ≤ QD

Hst(E),

where QD
Hst(E) quadratic form of a tensored operator on L2(Hst(E)) of

the shape:
− ∂2

t − δt=0 − ∂2
s −

1
4s2 sin θ

14/15



Motivations and state of the art Description of the problem and main result Proof

Lower bound on the counting function

θ

Hst(E)

s sin θ + t cos θ = 0 s sin θ + t cos θ = 1

0
• •

(sin θ)−1 + M| ln E |

We get the final form ordering

QΩθ ≤ Q̂D
Hst(E) ≤ QD
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where QD
Hst(E) quadratic form of a tensored operator on L2(Hst(E)) of

the shape:
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Lower bound on the counting function

θ

Hst(E)

s sin θ + t cos θ = 0 s sin θ + t cos θ = 1

0
• •

(sin θ)−1 + M| ln E |

Finally we have:
N−1/4−E−λ1(E)(−∂2

s −
1

4s2 sin θ
) ≤ N−1/4−E (QΩθ )

We choose M > 0 such that 1/4 + E + λ1(E) = O(E | ln E |).

P. EXNER, K. YOSHITOMI
Asymptotics of eigenvalues of the Schrödinger operator with
strong δ-interaction on a loop. J. Geom. Phys. (2002)
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W. KIRSCH, B. SIMON
Corrections to the classical behavior of the number of bound
states of Schrödinger operators. Ann. Phys. (1988)

14/15



Motivations and state of the art Description of the problem and main result Proof

Eskerrik asko zure arretagatik !

Thank you for your attention !
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