On the bound states of Schrödinger operators with δ -interactions on conical surfaces

Thomas OURMIÈRES-BONAFOS

Joint work with Vladimir LOTOREICHIK (NPI, REZ)

BCAM - Basque Center for Applied Mathematics

Bressanone, Conference MCQM 12-th February 2016

2 Description of the problem and main result

2 Description of the problem and main result

Proof

Problem

Let $d \ge 3$ and $\theta \in (0, \pi/2)$. We define $C_{d,\theta}$, the cone with "circular" cross-section by:

Figure: The cone $C_{d,\theta}$ in dimension d = 3.

We are interested in the self-adjoint operator $H_{\alpha,C_{d,\theta}}$ acting on $L^2(\mathbb{R}^d)$ which formally writes:

$$H_{\alpha,\mathcal{C}_{d,\theta}} = -\Delta - \alpha \delta(X - \mathcal{C}_{d,\theta}), \quad \alpha > 0.$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

R

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

In dimension d = 3, we have:

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

For E > 0, we define the counting function:

$$\mathcal{N}_{-\alpha^2/4-\boldsymbol{\textit{E}}}(\boldsymbol{\textit{H}}_{\alpha,\mathcal{C}_{\boldsymbol{\textit{d}},\boldsymbol{\theta}}}) = \#\{\lambda \in \sigma_{\mathsf{dis}}(\boldsymbol{\textit{H}}_{\alpha,\mathcal{C}_{\boldsymbol{\textit{d}},\boldsymbol{\theta}}}) : \lambda < -\alpha^2/4 - \boldsymbol{\textit{E}}\}$$

 $\rightarrow \alpha^2/4$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

In dimension d = 3, we have:

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

For E > 0, we define the counting function:

$$\mathcal{N}_{-\alpha^2/4-\textit{\textit{E}}}(\textit{\textit{H}}_{\alpha,\mathcal{C}_{\textit{d},\theta}}) = \#\{\lambda \in \sigma_{\sf dis}(\textit{\textit{H}}_{\alpha,\mathcal{C}_{\textit{d},\theta}}) : \lambda < -\alpha^2/4 - \textit{\textit{E}}\} = 0$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

In dimension d = 3, we have:

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\boldsymbol{d},\boldsymbol{\theta}}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

For E > 0, we define the counting function:

$$\mathcal{N}_{-\alpha^2/4-\boldsymbol{\textit{E}}}(\boldsymbol{\textit{H}}_{\alpha,\mathcal{C}_{\boldsymbol{\textit{d}},\theta}}) = \#\{\lambda \in \sigma_{\mathsf{dis}}(\boldsymbol{\textit{H}}_{\alpha,\mathcal{C}_{\boldsymbol{\textit{d}},\theta}}) : \lambda < -\alpha^2/4 - \boldsymbol{\textit{E}}\} = 1$$

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

In dimension d = 3, we have:

i)
$$\sigma_{\text{ess}}(\boldsymbol{H}_{\alpha,\mathcal{C}_{\boldsymbol{d},\theta}}) = [-\alpha^2/4,+\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

For E > 0, we define the counting function:

 $\mathcal{N}_{-\alpha^2/4-\boldsymbol{\textit{E}}}(\boldsymbol{\textit{H}}_{\alpha,\mathcal{C}_{\boldsymbol{\textit{d}},\boldsymbol{\theta}}}) = \#\{\lambda \in \sigma_{\mathsf{dis}}(\boldsymbol{\textit{H}}_{\alpha,\mathcal{C}_{\boldsymbol{\textit{d}},\boldsymbol{\theta}}}) : \lambda < -\alpha^2/4 - \boldsymbol{\textit{E}}\} = \mathbf{2}$

Proof

Goals

Theorem [BEHRNDT, EXNER, LOTOREICHIK (14)]

In dimension d = 3, we have:

i)
$$\sigma_{\text{ess}}(H_{\alpha,\mathcal{C}_{\mathbf{d},\theta}}) = [-\alpha^2/4, +\infty),$$

ii)
$$\#\sigma_{\mathsf{dis}}(H_{\alpha,\mathcal{C}_{d,\theta}}) = \infty$$

For E > 0, we define the counting function:

$$\mathcal{N}_{-\alpha^2/4-\textit{\textit{E}}}(\textit{\textit{H}}_{\alpha,\mathcal{C}_{\textit{d},\theta}}) = \#\{\lambda \in \sigma_{\sf dis}(\textit{\textit{H}}_{\alpha,\mathcal{C}_{\textit{d},\theta}}) : \lambda < -\alpha^2/4 - \textit{\textit{E}}\} = 2$$

Goals:

- For d = 3: behaviour of $\mathcal{N}_{-\alpha^2/4-\underline{E}}(H_{\alpha,\mathcal{C}_{d,\theta}})$ when $\underline{E} \to 0$.
- Structure of the spectrum in $d \ge 4$.

Laplacians and conical structures

Conical Layers:

P. EXNER, M. TATER

Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A (2010)

M. DAUGE, T. O.-B., N. RAYMOND

Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Comm. Pure and Applied Ana. (2015)

Laplacians and conical structures

Conical Layers:

P. EXNER, M. TATER

Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A (2010)

M. DAUGE, T. O.-B., N. RAYMOND

Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Comm. Pure and Applied Ana. (2015)

Robin Laplacian:

V. BRUNEAU, N. POPOFF

On the negative spectrum of the Robin Laplacian in corner domains. Preprint ArXiv (2015)

K. PANKRASHKIN

On the discrete spectrum of Robin Laplacians in conical domains. To appear Math. Model. Nat. Phenom. (2016)

Laplacians and conical structures

Conical Layers:

P. EXNER, M. TATER

Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A (2010)

M. DAUGE, T. O.-B., N. RAYMOND

Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Comm. Pure and Applied Ana. (2015)

Robin Laplacian:

V. BRUNEAU, N. POPOFF

On the negative spectrum of the Robin Laplacian in corner domains. Preprint ArXiv (2015)

K. PANKRASHKIN

On the discrete spectrum of Robin Laplacians in conical domains. To appear Math. Model. Nat. Phenom. (2016)

Magnetic Laplacian:

V. BONAILLIE-NOËL, M. DAUGE, N. POPOFF, N. RAYMOND

Magnetic Laplacian in sharp three-dimensional cones. Operator Theory Advances and Application (Birkhäuser): Proceedings of the Conference Spectral Theory and Mathematical Physics, Santiago 2014

2 Description of the problem and main result

Let $d \geq 3$, $\alpha > 0$ and $\theta \in (0, \pi/2)$. We define the quadratic form

$$\mathbf{Q}_{\alpha,\mathcal{C}_{d,\theta}}[u] = \|\nabla u\|_{L^2(\mathbb{R}^d)}^2 - \alpha \|u\|_{L^2(\mathcal{C}_{d,\theta})}^2, \quad \mathsf{dom}(\mathbf{Q}_{\alpha,\mathcal{C}_{d,\theta}}) = H^1(\mathbb{R}^d).$$

Let $d \ge 3$, $\alpha > 0$ and $\theta \in (0, \pi/2)$. We define the quadratic form

$$\mathbf{Q}_{\alpha,\mathcal{C}_{d,\theta}}[u] = \|\nabla u\|_{L^2(\mathbb{R}^d)}^2 - \alpha \|u\|_{L^2(\mathcal{C}_{d,\theta})}^2, \quad \mathsf{dom}(\mathbf{Q}_{\alpha,\mathcal{C}_{d,\theta}}) = H^1(\mathbb{R}^d).$$

Proposition [BEHRNDT, EXNER, LOTOREICHIK (14)]

The quadratic form $Q_{\alpha,C_{d,\theta}}$ is closed and semi-bounded on $L^2(\mathbb{R}^d)$. Therefore, we denote $H_{\alpha,C_{d,\theta}}$ the associated self-adjoint operator given by its Friedrichs extension.

Let $d \ge 3$, $\alpha > 0$ and $\theta \in (0, \pi/2)$. We define the quadratic form

$$Q_{\alpha,\mathcal{C}_{d,\theta}}[u] = \|\nabla u\|_{L^2(\mathbb{R}^d)}^2 - \alpha \|u\|_{L^2(\mathcal{C}_{d,\theta})}^2, \quad \mathsf{dom}(Q_{\alpha,\mathcal{C}_{d,\theta}}) = H^1(\mathbb{R}^d).$$

Proposition [BEHRNDT, EXNER, LOTOREICHIK (14)]

The quadratic form $Q_{\alpha,C_{d,\theta}}$ is closed and semi-bounded on $L^2(\mathbb{R}^d)$. Therefore, we denote $H_{\alpha,C_{d,\theta}}$ the associated self-adjoint operator given by its Friedrichs extension.

(Reduction to $\alpha = 1$) Let $u \in \text{dom}(Q_{\alpha,C_{d,\theta}})$, we define $\hat{x} = \alpha^{-1}x$. As $C_{d,\theta}$ is dilatation invariant we get:

$$\frac{\mathbf{Q}_{\alpha,\mathcal{C}_{\boldsymbol{d},\boldsymbol{\theta}}}[\boldsymbol{u}]}{\|\boldsymbol{u}\|_{L^{2}(\mathbb{R}^{d})}^{2}} = \alpha^{2} \frac{\mathbf{Q}_{1,\mathcal{C}_{\boldsymbol{d},\boldsymbol{\theta}}}[\hat{\boldsymbol{u}}]}{\|\hat{\boldsymbol{u}}\|_{L^{2}(\mathbb{R}^{d})}^{2}}$$

Let $d \ge 3$, $\alpha > 0$ and $\theta \in (0, \pi/2)$. We define the quadratic form

$$\mathbf{Q}_{\alpha,\mathcal{C}_{d,\theta}}[u] = \|\nabla u\|_{L^2(\mathbb{R}^d)}^2 - \alpha \|u\|_{L^2(\mathcal{C}_{d,\theta})}^2, \quad \mathsf{dom}(\mathbf{Q}_{\alpha,\mathcal{C}_{d,\theta}}) = H^1(\mathbb{R}^d).$$

Proposition [BEHRNDT, EXNER, LOTOREICHIK (14)]

The quadratic form $Q_{\alpha,C_{d,\theta}}$ is closed and semi-bounded on $L^2(\mathbb{R}^d)$. Therefore, we denote $H_{\alpha,C_{d,\theta}}$ the associated self-adjoint operator given by its Friedrichs extension.

(Reduction to $\alpha = 1$) Let $u \in \text{dom}(Q_{\alpha,C_{d,\theta}})$, we define $\hat{x} = \alpha^{-1}x$. As $C_{d,\theta}$ is dilatation invariant we get:

$$\frac{\mathbf{Q}_{\alpha,\mathcal{C}_{d,\theta}}[u]}{\|u\|_{L^2(\mathbb{R}^d)}^2} = \alpha^2 \frac{\mathbf{Q}_{1,\mathcal{C}_{d,\theta}}[\hat{u}]}{\|\hat{u}\|_{L^2(\mathbb{R}^d)}^2}$$

From now on, we drop the index 1: $Q_{1,C_{d,\theta}} = Q_{C_{d,\theta}}$ and $H_{1,C_{d,\theta}} = H_{C_{d,\theta}}$.

Main result

Theorem [LOTOREICHIK, O.-B. (15)]

Let $\theta \in (0, \pi/2)$.

- i) In dimension $d \ge 3$, $\sigma_{ess}(H_{\mathcal{C}_{d,\theta}}) = [-1/4, +\infty)$.
- ii) In dimension d = 3, we have

$$\mathcal{N}_{-1/4-\boldsymbol{\textit{E}}}(\mathsf{H}_{\mathcal{C}_{d,\theta}})\sim rac{\cot\theta}{4\pi}|\ln\boldsymbol{\textit{E}}|,\quad \boldsymbol{\textit{E}}
ightarrow 0$$

iii) In dimension $d \ge 4$, $\sigma_{dis}(H_{\mathcal{C}_{d,\theta}}) = \emptyset$.

(hyper-)cylindrical coordinates

Let $(r, z, \phi) \in \mathbb{R}_+ \times \mathbb{R} \times \mathbb{S}^{d-2}$ be the cylindrical coordinates, for all $k \in \{1, \dots, d-2\}$: $x_k = r \left(\prod_{p=1}^{k-1} \sin \phi_p\right) \cos \phi_k, \quad x_{d-1} = r \prod_{p=1}^{d-2} \sin \phi_p, \quad x_d = z.$

(hyper-)cylindrical coordinates

Let $(r, z, \phi) \in \mathbb{R}_+ \times \mathbb{R} \times \mathbb{S}^{d-2}$ be the cylindrical coordinates, for all $k \in \{1, \dots, d-2\}$: $x_k = r \left(\prod_{p=1}^{k-1} \sin \phi_p\right) \cos \phi_k, \quad x_{d-1} = r \prod_{p=1}^{d-2} \sin \phi_p, \quad x_d = z.$

(hyper-)cylindrical coordinates

Let $(r, z, \phi) \in \mathbb{R}_+ \times \mathbb{R} \times \mathbb{S}^{d-2}$ be the cylindrical coordinates, for all $k \in \{1, \dots, d-2\}$: $x_k = r\left(\prod_{p=1}^{k-1} \sin \phi_p\right) \cos \phi_k, \quad x_{d-1} = r \prod_{p=1}^{d-2} \sin \phi_p, \quad x_d = z.$ \mathbb{R}^d becomes $\mathbb{R}^2_+ \times \mathbb{S}^{d-2}$. $C_{d,\theta}$ becomes $\Gamma_{\theta} \times \mathbb{S}^{d-2}$:

Figure: Meridian domain \mathbb{R}^2_+ and the ray Γ^2_{θ}

The quadratic form $Q_{\mathcal{C}_{d,\theta}}$ is expressed as

$$\begin{aligned} Q_{\mathcal{C}_{d,\theta}}[u] &= \int_{\mathbb{R}^2_+ \times \mathbb{S}^{d-2}} (|\partial_r u|^2 + |\partial_z u|^2 + r^{-2} \|\nabla_{\mathbb{S}^{d-2}} u\|^2) r^{d-2} \mathrm{d}r \mathrm{d}z \mathrm{d}\mathfrak{m}_{d-2}(\phi) \\ &- \int_{\Gamma_{\theta} \times \mathbb{S}^{d-2}} |u(s,\phi)|^2 \mathrm{d}\gamma_{\theta}(s) \mathrm{d}\mathfrak{m}_{d-2}(\phi). \end{aligned}$$

Fiber decomposition

Decomposing into spherical harmonics, we get the family of quadratic forms:

$$\mathbf{Q}_{\Gamma_{\theta}}^{[l]}[u] = \int_{\mathbb{R}^{2}_{+}} (|\partial_{r}u|^{2} + |\partial_{z}u|^{2} + \frac{l(l+d-3)}{r^{2}}|u|^{2})r^{d-2}\mathrm{d}r\mathrm{d}z$$
$$-\int_{\mathbb{R}^{+}} |u(s\sin\theta, s\cos\theta)|^{2}(s\sin\theta)^{d-2}\mathrm{d}s.$$

Fiber decomposition

Decomposing into spherical harmonics, we get the family of quadratic forms:

$$\begin{aligned} \mathbf{Q}_{\Gamma_{\theta}}^{[I]}[u] &= \int_{\mathbb{R}^2_+} (|\partial_r u|^2 + |\partial_z u|^2 + \frac{l(l+d-3)}{r^2} |u|^2) r^{d-2} \mathrm{d}r \mathrm{d}z \\ &- \int_{\mathbb{R}_+} |u(s\sin\theta, s\cos\theta)|^2 (s\sin\theta)^{d-2} \mathrm{d}s. \end{aligned}$$

The quadratic forms do not depend on *k* and their domains are:

$$\operatorname{dom}(\mathcal{Q}_{\Gamma_{\theta}}^{[I]}) = \begin{cases} \{u: u, \partial_{r}u, \partial_{z}u \in L^{2}(\mathbb{R}^{2}_{+}, r^{d-2}\operatorname{drd} z)\}, & I = 0, \\ \{u: u, \partial_{r}u, \partial_{z}u, r^{-1}u \in L^{2}(\mathbb{R}^{2}_{+}, r^{d-2}\operatorname{drd} z)\}, & I > 0. \end{cases}$$

Fiber decomposition

Decomposing into spherical harmonics, we get the family of quadratic forms:

$$\begin{aligned} \mathbf{Q}_{\Gamma_{\theta}}^{[I]}[u] &= \int_{\mathbb{R}^2_+} (|\partial_r u|^2 + |\partial_z u|^2 + \frac{l(l+d-3)}{r^2} |u|^2) r^{d-2} \mathrm{d}r \mathrm{d}z \\ &- \int_{\mathbb{R}_+} |u(s\sin\theta, s\cos\theta)|^2 (s\sin\theta)^{d-2} \mathrm{d}s. \end{aligned}$$

The quadratic forms do not depend on *k* and their domains are:

$$\operatorname{dom}(Q_{\Gamma_{\theta}}^{[l]}) = \begin{cases} \{u: u, \partial_r u, \partial_z u \in L^2(\mathbb{R}^2_+, r^{d-2} \operatorname{drd} z)\}, & l = 0, \\ \{u: u, \partial_r u, \partial_z u, r^{-1} u \in L^2(\mathbb{R}^2_+, r^{d-2} \operatorname{drd} z)\}, & l > 0. \end{cases}$$

Remark:

If (I, d) = (I, 3) and I > 0 then for all $u \in \text{dom}(\mathbf{Q}_{\Gamma_{\theta}}^{[I]}), u(0, z) = 0$.

Motivations and state of the art

2 Description of the problem and main result

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}$ such that $(d, l) \ne (3, 0)$. Then $Q_{\Gamma_{\theta}}^{[l]}$ is unitarily equivalent to the quadratic form

$$\int_{\mathbb{R}^2_+} |\partial_r \tilde{u}|^2 + |\partial_z \tilde{u}|^2 + \frac{\gamma(d,l)}{r^2} |\tilde{u}|^2 \mathrm{d}r \mathrm{d}z - \int_{\mathbb{R}_+} |\tilde{u}(s\sin\theta,s\cos\theta)|^2 \mathrm{d}s,$$

with $\gamma(d, I) = I(I + d - 3) + (1/4)(d - 2)(d - 4)$ and $\tilde{u} \in H^1_0(\mathbb{R}^2_+)$,

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}$ such that $(d, l) \ne (3, 0)$. Then $Q_{\Gamma_{\theta}}^{[l]}$ is unitarily equivalent to the quadratic form

$$\int_{\mathbb{R}^2_+} |\partial_r \tilde{u}|^2 + |\partial_z \tilde{u}|^2 + \frac{\gamma(d,l)}{r^2} |\tilde{u}|^2 \mathrm{d}r \mathrm{d}z - \int_{\mathbb{R}_+} |\tilde{u}(s\sin\theta,s\cos\theta)|^2 \mathrm{d}s,$$

with $\gamma(d, I) = I(I + d - 3) + (1/4)(d - 2)(d - 4)$ and $\tilde{u} \in H^1_0(\mathbb{R}^2_+)$,

Proof: Let $(d, I) \neq (3, 0)$: For $u \in \text{dom}(Q_{\Gamma_{\theta}}^{[I]})$, we let $\tilde{u} = r^{(d-2)/2}u$.

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}$ such that $(d, l) \ne (3, 0)$. Then $Q_{\Gamma_{\theta}}^{[l]}$ is unitarily equivalent to the quadratic form

$$\int_{\mathbb{R}^2_+} |\partial_r \tilde{u}|^2 + |\partial_z \tilde{u}|^2 + \frac{\gamma(\mathbf{d}, \mathbf{l})}{r^2} |\tilde{u}|^2 \mathrm{d}r \mathrm{d}z - \int_{\mathbb{R}_+} |\tilde{u}(s\sin\theta, s\cos\theta)|^2 \mathrm{d}s,$$

with
$$\gamma(d, I) = I(I + d - 3) + (1/4)(d - 2)(d - 4)$$
 and $\tilde{u} \in H_0^1(\mathbb{R}^2_+)$.

Proof: Let $(d, l) \neq (3, 0)$: For $u \in \text{dom}(Q_{\Gamma_{\theta}}^{[l]})$, we let $\tilde{u} = r^{(d-2)/2}u$. We look at $Q_{\Gamma_{\theta}}^{[l]}[r^{-(d-2)/2}\tilde{u}]$. Integrating by parts we get:

$$\begin{split} \int_{\mathbb{R}_{+}} |\partial_{r}(r^{-(d-2)/2}\tilde{u})|^{2}r^{d-2}\mathrm{d}r &= \int_{\mathbb{R}_{+}} |\partial_{r}\tilde{u}|^{2}\mathrm{d}r + \int_{\mathbb{R}_{+}} \frac{\tilde{\gamma}(d)}{4r^{2}} |\tilde{u}|^{2}\mathrm{d}r \\ &+ \frac{d-2}{2} \lim_{r \to 0} (r^{(d-3)}|u|^{2}). \end{split}$$

Proof

Flat metric

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}$ such that $(d, l) \ne (3, 0)$. Then $Q_{\Gamma_{\theta}}^{[l]}$ is unitarily equivalent to the quadratic form

$$\int_{\mathbb{R}^2_+} |\partial_r \tilde{u}|^2 + |\partial_z \tilde{u}|^2 + \frac{\gamma(d,l)}{r^2} |\tilde{u}|^2 \mathrm{d}r \mathrm{d}z - \int_{\mathbb{R}_+} |\tilde{u}(s\sin\theta,s\cos\theta)|^2 \mathrm{d}s,$$

with
$$\gamma(d, I) = I(I + d - 3) + (1/4)(d - 2)(d - 4)$$
 and $\tilde{u} \in H_0^1(\mathbb{R}^2_+)$

Proof: Let $(d, I) \neq (3, 0)$: For $u \in \text{dom}(Q_{\Gamma_{\theta}}^{[I]})$, we let $\tilde{u} = r^{(d-2)/2}u$. We look at $Q_{\Gamma_{\theta}}^{[I]}[r^{-(d-2)/2}\tilde{u}]$. Integrating by parts we get:

$$\int_{\mathbb{R}_{+}} |\partial_{r}(r^{-(d-2)/2}\tilde{u})|^{2}r^{d-2}dr = \int_{\mathbb{R}_{+}} |\partial_{r}\tilde{u}|^{2}dr + \int_{\mathbb{R}_{+}} \frac{\tilde{\gamma}(d)}{4r^{2}}|\tilde{u}|^{2}dr + \frac{d-2}{2}\underbrace{\lim_{r\to 0}(|u|^{2})}_{=2}.$$

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}$ such that $(d, l) \ne (3, 0)$. Then $Q_{\Gamma_{\theta}}^{[l]}$ is unitarily equivalent to the quadratic form

$$\int_{\mathbb{R}^2_+} |\partial_r \tilde{u}|^2 + |\partial_z \tilde{u}|^2 + \frac{\gamma(d,l)}{r^2} |\tilde{u}|^2 \mathrm{d}r \mathrm{d}z - \int_{\mathbb{R}_+} |\tilde{u}(s\sin\theta,s\cos\theta)|^2 \mathrm{d}s,$$

with
$$\gamma(d, I) = I(I + d - 3) + (1/4)(d - 2)(d - 4)$$
 and $\tilde{u} \in H_0^1(\mathbb{R}^2_+)$

Proof: Let $(d, l) \neq (3, 0)$: For $u \in \text{dom}(Q_{\Gamma_{\theta}}^{[l]})$, we let $\tilde{u} = r^{(d-2)/2}u$. We look at $Q_{\Gamma_{\theta}}^{[l]}[r^{-(d-2)/2}\tilde{u}]$. Integrating by parts we get:

$$\int_{\mathbb{R}_{+}} |\partial_r (r^{-(d-2)/2} \tilde{u})|^2 r^{d-2} dr = \int_{\mathbb{R}_{+}} |\partial_r \tilde{u}|^2 dr + \int_{\mathbb{R}_{+}} \frac{\tilde{\gamma}(d)}{4r^2} |\tilde{u}|^2 dr + \frac{d-2}{2} \underbrace{\lim_{r \to 0} (r^{(d-3)}|u|^2)}_{\substack{q \ge 4}}.$$

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}^*$. $Q_{\Gamma_{\theta}}^{[l]}$ can generate discrete spectrum only if (d, l) = (3, 0).

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}^*$. $Q_{\Gamma_{\theta}}^{[l]}$ can generate discrete spectrum only if (d, l) = (3, 0).

Proof: When $(d, l) \neq (3, 0), \gamma(d, l) > 0.$

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}^*$. $Q_{\Gamma_{\theta}}^{[l]}$ can generate discrete spectrum only if (d, l) = (3, 0).

Proof: When $(d, l) \neq (3, 0), \gamma(d, l) > 0$. For $\tilde{u} \in H_0^1(\mathbb{R}^2_+)$

$$Q_{\Gamma_{\theta}}^{[l]}[r^{-(d-2)/2}\tilde{u}] \geq \|\nabla \tilde{u}\|_{L^{2}(\mathbb{R}^{2}_{+})}^{2} - \|\tilde{u}\|_{L^{2}(\Gamma_{\theta})}^{2}$$

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}^*$. $Q_{\Gamma_{\theta}}^{[l]}$ can generate discrete spectrum only if (d, l) = (3, 0).

Proof: When $(\boldsymbol{d}, \boldsymbol{l}) \neq (3, 0), \gamma(\boldsymbol{d}, \boldsymbol{l}) > 0$. For $\tilde{\boldsymbol{u}} \in H^1_0(\mathbb{R}^2_+)$

$$\begin{split} \mathcal{Q}_{\Gamma_{\theta}}^{[l]}[r^{-(d-2)/2}\tilde{u}] &\geq \|\nabla \tilde{u}\|_{L^{2}(\mathbb{R}^{2}_{+})}^{2} - \|\tilde{u}\|_{L^{2}(\Gamma_{\theta})}^{2} \\ &= \|\nabla \tilde{u}_{0}\|_{L^{2}(\mathbb{R}^{2})}^{2} - \|\tilde{u}_{0}\|_{L^{2}(\Gamma)}^{2}, \quad \tilde{u}_{0} \in \mathcal{H}^{1}(\mathbb{R}^{2}). \end{split}$$

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}^*$. $Q_{\Gamma_{\theta}}^{[l]}$ can generate discrete spectrum only if (d, l) = (3, 0).

Proof: When $(\boldsymbol{d}, \boldsymbol{l}) \neq (3, 0), \gamma(\boldsymbol{d}, \boldsymbol{l}) > 0$. For $\tilde{\boldsymbol{u}} \in H^1_0(\mathbb{R}^2_+)$

$$\begin{split} & \mathcal{Q}_{\Gamma_{\theta}}^{[l]}[r^{-(d-2)/2}\tilde{u}] \geq \|\nabla \tilde{u}\|_{L^{2}(\mathbb{R}^{2}_{+})}^{2} - \|\tilde{u}\|_{L^{2}(\Gamma_{\theta})}^{2} \\ &= \|\nabla \tilde{u}_{0}\|_{L^{2}(\mathbb{R}^{2})}^{2} - \|\tilde{u}_{0}\|_{L^{2}(\Gamma)}^{2}, \quad \tilde{u}_{0} \in H^{1}(\mathbb{R}^{2}). \\ &\geq -(1/4)\|\tilde{u}_{0}\|_{L^{2}(\mathbb{R}^{2})}^{2} = -(1/4)\|\tilde{u}\|_{L^{2}(\mathbb{R}^{2}_{+})}^{2}. \end{split}$$

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}^*$. $Q_{\Gamma_{\theta}}^{[l]}$ can generate discrete spectrum only if (d, l) = (3, 0).

Proof: When $(\boldsymbol{d}, \boldsymbol{l}) \neq (3, 0), \gamma(\boldsymbol{d}, \boldsymbol{l}) > 0$. For $\tilde{\boldsymbol{u}} \in H^1_0(\mathbb{R}^2_+)$

$$\begin{split} Q_{\Gamma_{\theta}}^{[I]}[r^{-(d-2)/2}\tilde{u}] &\geq \|\nabla \tilde{u}\|_{L^{2}(\mathbb{R}^{2}_{+})}^{2} - \|\tilde{u}\|_{L^{2}(\Gamma_{\theta})}^{2} \\ &= \|\nabla \tilde{u}_{0}\|_{L^{2}(\mathbb{R}^{2})}^{2} - \|\tilde{u}_{0}\|_{L^{2}(\Gamma)}^{2}, \quad \tilde{u}_{0} \in H^{1}(\mathbb{R}^{2}). \\ &\geq -(1/4)\|\tilde{u}_{0}\|_{L^{2}(\mathbb{R}^{2})}^{2} = -(1/4)\|\tilde{u}\|_{L^{2}(\mathbb{R}^{2}_{+})}^{2}. \end{split}$$

Thanks to the min-max principle: $\inf \sigma(\mathbf{Q}_{\Gamma_{\theta}}^{[l]}) \geq -(1/4)$.

Proposition [LOTOREICHIK, O.-B. (15)]

Let $d \ge 3$ and $l \in \mathbb{N}^*$. $Q_{\Gamma_{\theta}}^{[l]}$ can generate discrete spectrum only if (d, l) = (3, 0).

Proof: When $(\boldsymbol{d}, \boldsymbol{l}) \neq (3, 0), \gamma(\boldsymbol{d}, \boldsymbol{l}) > 0$. For $\tilde{\boldsymbol{u}} \in H^1_0(\mathbb{R}^2_+)$

$$\begin{split} \mathcal{Q}_{\Gamma_{\theta}}^{[l]}[r^{-(d-2)/2}\tilde{u}] &\geq \|\nabla \tilde{u}\|_{L^{2}(\mathbb{R}^{2}_{+})}^{2} - \|\tilde{u}\|_{L^{2}(\Gamma_{\theta})}^{2} \\ &= \|\nabla \tilde{u}_{0}\|_{L^{2}(\mathbb{R}^{2})}^{2} - \|\tilde{u}_{0}\|_{L^{2}(\Gamma)}^{2}, \quad \tilde{u}_{0} \in \mathcal{H}^{1}(\mathbb{R}^{2}). \\ &\geq -(1/4)\|\tilde{u}_{0}\|_{L^{2}(\mathbb{R}^{2})}^{2} = -(1/4)\|\tilde{u}\|_{L^{2}(\mathbb{R}^{2}_{+})}^{2}. \end{split}$$

Thanks to the min-max principle: $\inf \sigma(\mathbf{Q}_{\Gamma_{\theta}}^{[l]}) \geq -(1/4)$.

Consequence: We focus only on (d, l) = (3, 0) to prove the accumulation of the eigenvalues.

In these variables the quadratic form reads:

$$\begin{aligned} \mathbf{Q}_{\Omega_{\theta}}[\boldsymbol{u}] &= \int_{\Omega_{\theta}} (|\partial_{s}\boldsymbol{u}|^{2} + |\partial_{t}\boldsymbol{u}|^{2}) (s\sin\theta + t\cos\theta) \mathrm{d}s \mathrm{d}t \\ &- \int_{s>0} |\boldsymbol{u}(s,0)|^{2} s\sin\theta \mathrm{d}s \end{aligned}$$

In these variables the quadratic form reads:

$$\begin{aligned} \mathbf{Q}_{\Omega_{\theta}}[\boldsymbol{u}] &= \int_{\Omega_{\theta}} (|\partial_{s}\boldsymbol{u}|^{2} + |\partial_{t}\boldsymbol{u}|^{2}) (s\sin\theta + t\cos\theta) \mathrm{d}s \mathrm{d}t \\ &- \int_{s>0} |\boldsymbol{u}(s,0)|^{2} s\sin\theta \mathrm{d}s \end{aligned}$$

Now, we bound $Q_{\Omega_{\theta}}$ by two quadratic forms using Dirichlet and Neumann bracketing:

$$Q^{\mathsf{N}}_{B(\boldsymbol{E})} \leq \boldsymbol{Q}_{\Omega_{ heta}} \leq Q^{\mathsf{D}}_{\mathsf{Hst}(\boldsymbol{E})}$$

Where, $Q_{B(E)}^{N}$ and $Q_{Hst(E)}^{D}$ are tensored quadratic forms.

Now, we bound $Q_{\Omega_{\theta}}$ by two quadratic forms using Dirichlet and Neumann bracketing:

$$Q^{\mathsf{N}}_{B(\boldsymbol{E})} \leq \boldsymbol{Q}_{\Omega_{ heta}} \leq Q^{\mathsf{D}}_{\mathsf{Hst}(\boldsymbol{E})}$$

Where, $Q_{B(E)}^{N}$ and $Q_{Hst(E)}^{D}$ are tensored quadratic forms. It yields

$$\mathcal{N}_{-1/4-\textit{E}}(\textit{Q}_{\textit{Hst}(\textit{E})}^{D}) \leq \mathcal{N}_{-1/4-\textit{E}}(\textit{Q}_{\Omega_{\theta}}) \leq \mathcal{N}_{-1/4-\textit{E}}(\textit{Q}_{\textit{B}(\textit{E})}^{N})$$

We get the form ordering:

$$Q_{\Omega_{\theta}} \leq \tilde{Q}_{\mathsf{Hst}(\mathsf{E})}^{\mathsf{D}} \equiv \hat{Q}_{\mathsf{Hst}(\mathsf{E})}^{\mathsf{D}},$$

where $\hat{Q}^{D}_{Hst(E)}$ is the expression of $\tilde{Q}^{D}_{Hst(E)}$ in the flat metric.

$$Q_{\Omega_{ heta}} \leq \hat{Q}_{\mathsf{Hst}(E)}^{\mathsf{D}} \leq Q_{\mathsf{Hst}(E)}^{\mathsf{D}},$$

where $Q_{\text{Hst}(E)}^{\text{D}}$ quadratic form of a tensored operator on $L^2(\text{Hst}(E))$ of the shape:

$$-\partial_t^2 - \delta_{t=0} - \partial_s^2 - \frac{1}{4s^2\sin\theta}$$

$$Q_{\Omega_{\theta}} \leq \hat{Q}_{\mathsf{Hst}(E)}^{\mathsf{D}} \leq Q_{\mathsf{Hst}(E)}^{\mathsf{D}},$$

where $Q_{\text{Hst}(E)}^{\text{D}}$ quadratic form of a tensored operator on $L^2(\text{Hst}(E))$ of the shape:

$$\underbrace{-\partial_t^2 - \delta_{t=0}}_{\lambda_1(E) > 1/4} - \partial_s^2 - \frac{1}{4s^2 \sin \theta}$$

We choose M > 0 such that $1/4 + E + \lambda_1(E) = \mathcal{O}(E | \ln E|)$.

P. Exner, K. Yoshitomi

Asymptotics of eigenvalues of the Schrödinger operator with strong δ -interaction on a loop. J. Geom. Phys. (2002)

We choose M > 0 such that $1/4 + E + \lambda_1(E) = \mathcal{O}(E | \ln E|)$.

W. KIRSCH, B. SIMON

Corrections to the classical behavior of the number of bound states of Schrödinger operators. Ann. Phys. (1988)

Eskerrik asko zure arretagatik !

Thank you for your attention !